THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

У планет-гигантов Юпитера, Сатурна и Урана есть кольца. Впервые кольцо Сатурна было открыто голландским ученым Гюйгенсом в 1656 году, хотя еще раньше Галилей, рассматривая Сатурн в свой слабый телескоп, обнаружил, что эта планета чем-то окружена. Изучение Сатурна показало, что кольцо с поверхностью планеты нигде не соприкасается, состоит из нескольких колец, вложенных, друг в друга и разделенных промежутками.

Кольца не являются сплошными, а состоят из отдельных частиц, крупных и мелких, которые как спутники вращаются вокруг планеты, в совокупности образуя кольца. Внутренние кольца обращаются вокруг планеты с большей скоростью, чем внешние. Ученые вычислили эти скорости, и оказалось, что гак вращались бы спутники Сатурна, т.е. в полном соответствии с законами Кеплера, ось Сатурна наклонена.к плоскости его орбиты, поэтому в телескоп наблюдается изменение вида кольца. Галилею эти кольца показались какими-то загадочными “ушами”.

Наличие кольца у Юпитера предсказал в 1960 году ученый С. К. Всехсвятский, а в 1979 году его сфотографировали американские станции “Вояджер”. Кольцо Юпитера очень тонкое, состоит из мелких камней и пыли. Оно обращено к Земле ребром и поэтому с Земли не видно. Уран имеет очень тонкие кольца, которые в телескоп не наблюдаются. С помощью “Вояджера” обнаружили 11 четких колец и несколько нечетких, так называемых диффузных. Исследования спутников и колец далеких планет в будущем продолжатся и наверняка принесут много интересного.

Великий астроном Кеплер считал, что комет так же много, как рыб в воде. Не станем оспаривать этот тезис. Ведь есть же далеко за пределами нашей Солнечной системы кометное облако Оорта, где «хвостатые звезды» собрались в «косяк». Согласно одной из гипотез, оттуда они иногда «заплывают» в наши края и мы можем их наблюдать на небосводе. Как…

Многие из вас видели на ночном небе мерцающие звезды. Причина мерцания звезд — неоднородность воздуха и его движение. Мерцание звезд усиливается к горизонту. Уже это одно указывает, что на данное явление влияет атмосфера. Посмотрите на рисунок, и вы увидите, что чем длиннее путь луча, тем меньше угол между лучом и плоскостью горизонта. Мерцание звезд объясняется…

По территории нескодьких американских штатов — Юта, Аризона, Невада и Калифорния — течет река Колорадо. Она уникальна тем, что движется по дну созданного ею самой несколько миллионов лет назад гигантского каньона, равного которому нет на всей планете. Наиболее яркое представление о грандиозности этого чуда природы можно получить во время полета по туристскому маршруту из аэропорта…

На географических картах озера окрашены то в голубой, то в сиреневый цвет. Голубой цвет означает, что озеро пресное, а сиреневый, — что оно соленое. Соленость воды в озерах различна. Одни озера так насыщены солями, что в них невозможно утонуть, и их называют минеральными. В других вода только чуть солоноватая на вкус. Концентрация растворенных веществ зависит…

Мир, в котором мы живем, огромен, необозрим. Пространству нет ни начала, ни конца, оно беспредельно. Если представить себе ракетный корабль с неисчерпаемыми запасами энергии, то можно легко вообразить, что ты летишь в любой конец Вселенной, к какой-то самой далекой звезде. И что же дальше? А дальше — такое же беспредельное пространство. Астрономия — наука об…

Римский император Юлий Цезарь в 46 году до н.э. провел реформу календаря. Разработку нового календаря осуществила группа александрийских астрономов во главе с Созигеном. В основу календаря, позже получившего название юлианского, положен солнечный год, продолжительность которого была принята равной 365,25 суток. Но в календарном году может быть лишь целое число суток. Поэтому условились считать в течение…

Созвездие Рака — одно из самых малозаметных зодиакальных созвездий. История его очень интересна. Существует несколько довольно экзотических объяснений происхождения названия этого созвездия. Так, например, всерьез утверждалось, что египтяне поместили в эту область неба Рака как символ разрушения и смерти, потому что это животное питается падалью. Рак движется хвостом вперед. Около двух тысяч лет назад в…

Михаил Васильевич Ломоносов — великий русский ученый-энкциклопедист. Круг его интересов и исследований в естествознании охватил самые различные области наук — физика, химия, география, геология, астрономия. Умение анализировать явления в их взаимосвязи и широта интересов привели его к ряду важных выводов и достижений в области астрономии. Изучая явления атмосферного электричества, он выдвинул идею об электрической природе…

Нам часто приходится наблюдать, как в ясный солнечный день тень от облака, подгоняемого ветром, пробегает по Земле и достигает того места, где мы находимся. Облако скрывает Солнце. Во время солнечного затмения Луна проходит между Землей и Солнцем и скрывает его от нас. Наша планета Земля вращается в течение суток вокруг своей оси, одновременно движется вокруг…

Наше Солнце — это обычная звезда, а все звезды рождаются, живут и умирают. Любая звезда рано или поздно гаснет. К сожалению, и наше Солнце не будет светить вечно. Когда-то ученые полагали, что Солнце медленно остывает или “сгорает”. Однако теперь мы знаем, что если бы это происходило на самом деле, то его энергии хватило бы в…

Наша Солнечная система состоит из Солнца и планет, звезд, комет, астероидов и других космических тел. Сегодня мы поговорим о планетах, которые окружены кольцами. У каких планет есть кольца, Вы узнаете из этой статьи.

Как называется планета с кольцами?

Преимущественно кольца имеют только планеты-гиганты, о которых мы поговорим ниже. Кольца представляют собой образования из пыли и льда, которые вращаются вокруг небесного тела. Концентрируются они возле экватора и тем самым образуют тонкие линии. Такая особенность связана с осевым вращением планет: стабильное гравитационное поле присутствует в экваториальной зоне. Это и удерживает кольца вокруг планеты.

У каких планет есть кольца?

В нашей Солнечной системе кольца имеются у планет-гигантов. Самые большие и четко видимые кольца у Сатурна . Впервые их обнаружил в 1659 году голландский астроном Христиан Гюйгенс. Всего колец 6: наибольшее из них поделено на тысячи маленьких колечек. Они состоят из кусочков льда разного размера.

В конце ХХ века, когда изобрели космические корабли и точные телескопы, ученые увидели, что кольца есть не только у Сатурна. В 1977 году во время исследования Урана , было замечено свечение вокруг него. Оказалось, что это кольца. Так было открыто 9 колец, а «Вояджер-2» в 1986 году обнаружил еще 2 кольца – тонких, узких и темных.

В 1979 году космический аппарат «Вояджер-1» открыл кольца вокруг планеты Юпитер . Его внутреннее кольцо слабое и соприкасается с атмосферой планеты. И, наконец, в 1989 году «Вояджер-2» обнаружил вокруг Нептуна 4 кольца. Некоторые из них имели арки, области, где наблюдалась повышенная плотность вещества.

Тем не менее, современная высокоточная техника позволила открыть новые тайны нашей системы. Последние исследования ученых показали, что кольца есть у спутника Сатурна – Рея. Также карликовая планета Хаумеа, которая вращается в периферийной части Солнечной системы, имеет свою систему колец.

Ах, астрономия! Сколько странных открытий и сюрпризов она дарит неокрепшему детскому разуму! Помню, как я гордилась собой, когда во втором классе на школьной викторине самой первой смогла дать ответ на вопрос: «У каких планет есть кольца ». Тогда, в нежные девять лет, я и не представляла, что величественный Сатурн – не единственный обитатель Солнечной системы, имеющий такое необычное «украшение».

Что такое кольца

На самом деле, то, что мы называем «Кольцом», было бы правильнее назвать «цепью» или потоком. Несмотря на то, что с Земли или даже в мощный телескоп кольца Сатурна или Юпитера выглядят цельными, состоят они, на самом деле, из миллиардов отдельных фрагментов . В зависимости от состава самой планеты и окружающего космоса, этими «ингредиентами» может быть:

  • космическая пыль (обычно она составляет 80 – 90% всей массы колец );
  • смёрзшийся до состояния льда газ ;
  • обломки астероидов .

Причём такие «камешки» могут быть как крошечными, длиной в несколько метров, так и гигантскими, достигающими нескольких сотен километров. И, конечно, они не соприкасаются друг с другом , а свободно летят на огромной скорости вокруг планеты. Между крупными астероидами расстояние, как правило, колеблется от нескольких десятков до нескольких тысяч километров. А пространство между ними заполнено также быстро двигающейся мелкой пылью и льдом.


У каких планет есть кольца

В Солнечной Системе кольца имеет половина всех «официально признанных» планет:

  • Сатурн ;
  • Нептун ;
  • Уран (правда, его кольца удалось увидеть лишь в 1977 году, настолько они тусклые);
  • Юпитер – его кольца были открыты зондом Вояджер-1 , с Земли их невидно, так десятки более крупных спутников затмевают неяркое свечение колец;
  • Считается также, что кольца должны быть у Плутона .

А в 2012 году астрономы нашли экзопланету за пределами Солнечной Системы, вокруг которой вращается 37 крупных колец, а те, в свою очередь, состоят из тысяч более мелких. Ширина всех их - десятки миллионов километров!


Но лично меня в детстве поразило то, что кольца есть у нескольких естественных спутников , вращающихся вокруг планет-гигантов, и даже у астероидов. Например, Рея , спутник Сатурна, имеет целых три таких «украшения»! Есть кольцо и астероида Харикло – правда, астероид этот очень крупный, но всё равно поразительно!

Размеры колец

Ширина кольца вокруг планеты огромна (например, у Сатурна она равна 480 000 километров ); а вот толщина колеблется от нескольких десятков метров до нескольких километров. Причём движутся кольца у всех планет строго над экватором. Все астероиды, которые оказывались вдали от экватора, рано или поздно притягивались планетой, пока от пылевого роя не осталось только тонкое колечко.

Искусственные кольца у планет

Человек отличается удивительной способностью портить любое место, где он появляется. И космос – не исключение. За 50 лет мы оставили на орбите столько мусора, что из внешнего космоса все эти блестящие металлические обломки должны смотреться, как самое настоящее кольцо !

На прошлой неделе космический аппарат «Кассини» приступил к выполнению финальной части своей научной программы: «ныркам» между кольцами Сатурна. Первые 20 погружений в плоскость колец будут происходить вдали от газового гиганта, за F-кольцом, затем, после гравитационного маневра, аппарат перейдет к орбитам, вплотную приближающимся к планете. К середине сентября 2017 года «Кассини» войдет в плотные слои атмосферы и закончит свою многолетнюю миссию. По случаю старта этой опасной, но очень интересной программы исследований мы подготовили путеводитель по кольцам Сатурна, который поможет вам разобраться в том, что же будет изучать аппарат.

Всем известно, что Сатурн, шестая планета от Солнца и вторая по размерам после Юпитера, обладает самой роскошной (читайте: развитой и массивной) системой колец во всей Солнечной системе. Конечно, кольца есть и у других планет, например, у Юпитера и Нептуна, - а физики предсказывают, что через каких-то 20–40 миллионов лет они и у Марса. Но все эти кольца не идут ни в какое сравнение с сатурнианскими. Одна только основная система колец (C, B, A) имеет ширину 60 тысяч километров - это эквивалентно радиусу планеты. Вместе с более тусклыми кольцами она простирается больше чем на 12 миллионов километров. О самых больших и самых удаленных кольцах Сатурна мы поговорим подробнее чуть позже.


Для начала немного о том, как называют кольца Сатурна. Основные системы были названы латинскими буквами в порядке их открытия. Именно поэтому, считая от верхних слоев атмосферы, кольца располагаются так: D, C, B, A, F, G, E. Кроме того, есть кольца, названные в честь спутников планеты: Януса-Эпитметея и Фебы. Ответить на вопрос о том, сколько всего колец у Сатурна, непросто - это зависит от того, как на них смотреть. К примеру, в наземный телескоп вы, скорее всего, увидите пару колец, а «Кассини» легко различит щели внутри больших колец и насчитает десятки образований. Собственное название имеют около 30 из них.

Существуют разные теории о происхождении и возрасте колец. Одни из них предполагают, что возраст колец составляет всего 100 миллионов лет - около двух процентов возраста Солнечной системы. В других вариантах кольца могут быть ровесниками самого Сатурна. Одна из распространенных теорий говорит о том, что кольца когда-то были сравнительно крупным спутником, орбита которого приблизилась слишком близко к планете. Это привело к его разрушению гравитацией Сатурна. Общая масса материала в кольцах планеты оценивается в 3×10 19 килограмм, в тысячу раз меньше, чем масса земной Луны. В основном кольца состоят изо льда, но состав других компонентов, в частности, придающих им оранжево-розовый оттенок, до сих пор неизвестен.

D-кольцо

D-кольцо (тусклое)

Начнем с ближайшего к Сатурну кольца - D. Несмотря на то, что оно довольно тусклое и не относится к основной системе колец, его близость к гиганту создает на нем необычные узоры. Внутренняя кромка кольца отстоит от облаков планеты примерно на семь тысяч километров: в масштабах Земли оно бы располагалось всего в два раза выше, чем МКС, - в 800 километрах над поверхностью. Ширина кольца - 7,5 тысячи километров. При подлете к нему в 1980 году «Вояджер-1» заметил в нем несколько отдельных колец, которые при более близком рассмотрении оказались волнами . Стоит заметить, что толщина колец невелика, особенно по сравнению с шириной - во многих случаях она не превосходит нескольких метров. Высота волн составляла от двух до двадцати метров. Физики утверждают, что источник волн - гравитационное возмущение , например, от пролетевшей кометы - подобное наблюдалось позднее в кольцах Юпитера после падения кометы Шумейкера-Леви 9.

C-кольцо


Внутренняя область C-кольца. Чуть правее центра проходит Щель Коломбо.

Сразу после D-кольца располагается яркое кольцо C, шириной 17,5 тысяч километров. Оно было открыто еще в 1850 году американскими астрономами Уильямом и Джорджем Бондами. Как и на D, на нем также наблюдались волны от гравитационных воздействий. В C-кольце сосредоточена 1/3000 всей массы осколочного материала колец Сатурна. Среди внутренних структур можно выделить Щель Коломбо, внутри которой есть небольшое кольцо, находящееся в орбитальном резонансе с Титаном (крупнейший спутник Сатурна). Ширина щели - около 150 километров. Помимо нее в кольце есть еще три меньших «разрыва» - Максвелла, Бонда и Дейвиса

B-кольцо


Внешний край B-кольца

Следующим идет самое яркое и самое массивное из всех колец Сатурна - B. По суммарной массе оно сопоставимо с Мимасом (седьмой по величине спутник планеты), а толщина объекта насчитывает от пяти до пятнадцати метров. Ширина B-кольца достигает 25,5 тысячи километров, около трети диаметра Сатурна. Внутри него, кстати, располагается самый близкий к гиганту спутник, так до сих пор и не получивший тривиального названия, - S/2009 S 1 .

Самой примечательной особенностью B-кольца являются вертикальные образования на его внешней кромке. Они имеют в высоту свыше 2,5 километра - «Кассини» заметил их по длинным теням, которые те отбрасывали во время сатурнианского равноденствия.

Щель Кассини


Справа - внешняя область кольца B. Черная щель в центре - щель Гюйгенса с ярким кольцом Гюйгенса внутри, являющаяся частью деления Кассини. Левая часть снимка также относится к делению

Между кольцами B и A располагается одна из самых выразительных структур системы - Щель (или Деление) Кассини. Она доступна для наблюдения с Земли в любительские телескопы классом выше среднего. Ее ширина составляет 4,5 тысячи километра - сопоставимо с шириной D-кольца. Открыт объект был еще в XVII веке французским астрономом итальянского происхождения Джованни Доминико Кассини. Наблюдения с помощью «Вояджера-1» показали, что внутри щели есть материал, напоминающий собой материал кольца C, а также «настоящие» Щели (например, 300-километровая Щель Гюйгенса).

A-кольцо


Щель Энке в A-кольце

На расстоянии свыше 60 тысяч километров от поверхности Сатурна находится кольцо A - внешнее из основной системы колец. Оно тусклее кольца B, и в 7 раз легче его. Ширина объекта составляет 14,6 тысячи километра, толщина - 10–30 метров. Считается, что это одно из самых молодых колец Сатурна - на это неравномерное распределение температуры в нем.

Внутри кольца A располагается несколько сравнительно крупных спутников: 20-километровый Пан, 7-километровая Дафнис и 32-километровый Атлас. Их гравитационное влияние формирует края объекта. Как и внутри других колец, в нем есть крупные щели, например - 325-километровая щель Энке.

F-кольцо


F-кольцо и Прометей

На расстоянии в 2,6 тысячи километра от внешнего края A-кольца и 140 тысяч километров от центра Сатурна находится самое изменчивое кольцо Сатурна - F. При ширине всего в 30–500 километров оно привлекает к себе внимание астрономов как необычная динамическая система. F-кольцо гравитационно удерживается лунами-«пастухами»: Прометеем и Пандорой. По одной из теорий, оно при частичном разрушении двух столкнувшихся друг с другом спутников, которые и стали затем «пастухами». Кроме того, внутри этого кольца был обнаружен еще один небольшой спутник, вносящий дополнительные сложности в динамику объекта.

Кольцо Януса-Эпиметея


Кольцо Януса-Эпиметея отмечено крестом

За кольцом F следует очень тусклый объект - кольцо Януса-Эпиметея. Оно примечательно во многом тем, что было благодаря «Кассини». Именно сквозь кольцо Януса-Эпиметея аппарат недавно пролетел, исследуя состав и размер частиц в нем. Кстати, следующее «погружение» запланировано на 11 декабря 2016 года.

Наша Солнечная система, если иметь в виду ее вещество, состоит из Солнца и четырех планет-гигантов, а еще проще − из Солнца и Юпитера, поскольку масса Юпитера больше, чем всех прочих околосолнечных объектов – планет, комет, астероидов − вместе взятых. Фактически, мы живем в двойной системе Солнце-Юпитер, а вся остальная «мелочь» подчиняется их гравитации

Сатурн вчетверо меньше Юпитера по массе, но по составу похож на него: он тоже в основном состоит из легких элементов – водорода и гелия в отношении 9:1 по количеству атомов. Уран и Нептун еще менее массивны и по составу богаче более тяжелыми элементами – углеродом, кислородом, азотом. Поэтому группу из четырех гигантов обычно делят пополам, на две подгруппы. Юпитер и Сатурн называют газовыми гигантами, а Уран и Нептун – ледяными гигантами. Дело в том, что Уран и Нептун обладают не очень толстой атмосферой, а большая часть их объема – это ледяная мантия; т. е. довольно твердое вещество. А у Юпитера и Сатурна почти весь объем занят газообразной и жидкой «атмосферой». При этом все гиганты имеют железокаменные ядра, превышающие по массе нашу Землю.

На первый взгляд, планеты-гиганты примитивны, а маленькие планеты намного интереснее. Но может быть это потому, что мы пока плохо знаем природу этих четырех гигантов, а не потому что они малоинтересны. Просто мы с ними слабо знакомы. Например, к двум ледяным гигантам − Урану и Нептуну − за всю историю астрономии лишь однажды приближался космический зонд («Вояджер-2», NASA, 1986 и 1989 гг.), да и то – пролетел, не останавливаясь, мимо них. Много ли он мог там увидеть и измерить? Можно сказать, что к исследованию ледяных гигантов мы еще по-настоящему не приступали.

Газовые гиганты изучены намного детальнее, поскольку кроме пролетных аппаратов («Пионер-10 и 11», «Вояджер-1 и 2», «Улисс», «Кассини», «Новые горизонты», NASA и ESA) рядом с ними длительно работали искусственные спутники: «Галилео» (NASA) в 1995-2003 гг. и «Джуно» (NASA) с 2016 г. исследовали Юпитер, а «Кассини» (NASA и ESA) в 2004-2017 гг. изучал Сатурн.

Наиболее глубоко был исследован Юпитер, причем – в прямом смысле: в его атмосферу с борта «Галилео» был сброшен зонд, который влетел туда со скоростью 48 км/с, раскрыл парашют и за 1 час опустился на 156 км ниже верхней кромки облаков, где при внешнем давлении 23 атм и температуре 153 °C прекратил передавать данные, по-видимому, из-за перегрева. На траектории спуска он измерил многие параметры атмосферы, включая даже ее изотопный состав. Это заметно обогатило не только планетологию, но и космологию. Ведь гигантские планеты не отпускают от себя вещество, они навечно сохраняют то, из чего они родились; особенно это касается Юпитера. У его облачной поверхности вторая космическая скорость составляет 60 км/с; ясно, что ни одной молекуле оттуда никогда не уйти.

Поэтому мы думаем, что изотопный состав Юпитера, особенно состав водорода, характерен для самых первых этапов жизни, по крайней мере, Солнечной системы, а, может быть, и Вселенной. И это очень важно: соотношение тяжелого и легкого изотопов водорода говорит о том, как в первые минуты эволюции нашей Вселенной протекал синтез химических элементов, какие физические условия тогда были.

Юпитер быстро вращается, c периодом около 10 часов; а поскольку средняя плотность планеты невелика (1,3 г/см 3), центробежная сила заметно деформировала ее тело. При взгляде на планету можно заметить, что она сжата вдоль полярной оси. Степень сжатия Юпитера, т. е. относительная разница между его экваториальным и полярным радиусами составляет (R экв − R пол)/R экв = 0,065. Именно средняя плотность планеты (ρ ∝ M/R 3) и ее суточный период (T ) определяют форму ее тела. Как известно, планета – это космическое тело в состоянии гидростатического равновесия. На полюсе планеты действует только сила тяготения (GM/R 2), а на экваторе ей противодействует центробежная сила (V 2 /R = 4π 2 R 2 /RT 2). Их отношением и определяется форма планеты, поскольку давление в центре планеты не должно зависеть от направления: экваториальная колонка вещества должна весить столько же, сколько полярная. Отношение этих сил (4π 2 R /T 2)/(GM /R 2) ∝ 1/(M/R 3)T 2 ∝ 1/(ρT 2). Итак, чем меньше плотность и продолжительность суток, тем сильнее сжата планета. Проверим: средняя плотность Сатурна 0,7 г/см 3 , период его вращения 11 час, − почти такой же, как у Юпитера, − а сжатие 0,098. Сатурн сжат в полтора раза сильнее Юпитера, и это легко заметить при наблюдении планет в телескоп: сжатие Сатурна бросается в глаза.

Быстрое вращение планет-гигантов определяет не только форму их тела, а значит и форму их наблюдаемого диска, но и его внешний вид: облачная поверхность планет-гигантов имеет зональную структуру с полосами разного цвета, вытянутыми вдоль экватора. Потоки газа движутся быстро, со скоростями во многие сотни километров в час; их взаимное смещение вызывает сдвиговую неустойчивость и совместно с силой Кориолиса порождает гигантские вихри. Издалека заметны Большое Красное Пятно на Юпитере, Большой Белый Овал на Сатурне, Большое Темное Пятно на Нептуне. Особенно знаменит антициклон Большое Красное Пятно (БКП) на Юпитере. Когда-то БКП было вдвое больше нынешнего, его видели еще современники Галилея в свои слабенькие телескопы. Сегодня БКП побледнело, но все-таки этот вихрь уже почти 400 лет живет в атмосфере Юпитера, поскольку охватывает гигантскую массу газа. Его размер больше земного шара. Такая масса газа, единожды закрутившись, не скоро остановится. На нашей планете циклоны живут примерно неделю, а там − столетия.

В любом движении рассеивается энергия, а значит требуется ее источник. Каждая планета обладает двумя группами источников энергии – внутренними и внешними. Извне на планету льется поток солнечного излучения и падают метеороиды. Изнутри планету греет распад радиоактивных элементов и гравитационное сжатие самой планеты (механизма Кельвина - Гельмгольца). . Хотя мы уже видели, как на Юпитер падают крупные объекты, вызывающие мощные взрывы (комета Шумейкеров - Леви 9), оценки частоты их падения показывают, что средний поток приносимой ими энергии существенно меньше, чем приносит солнечный свет. С другой стороны, роль внутренних источников энергии неоднозначна. У планет земной группы, состоящих из тяжелых тугоплавких элементов, единственным внутренним источником тепла служит радиоактивный распад, но вклад его ничтожен по сравнению с теплом от Солнца.

У планет-гигантов доля тяжелых элементов существенно ниже, зато они массивнее и легче сжимаются, что делает выделение гравитационной энергии их главным источником тепла. А поскольку гиганты удалены от Солнца, внутренний источник становится конкурентом внешнему: порой планета греет себя сама сильнее, чем ее нагревает Солнце. Даже Юпитер, ближайший к Солнцу гигант, излучает (в инфракрасной области спектра) на 60 % больше энергии, чем получает от Солнца. А энергия, которую излучает в космос Сатурн, в 2,5 раза больше той, которую планета получает от Солнца.

Гравитационная энергия выделяется как при сжатии планеты в целом, так и при дифференциации ее недр, т. е. при опускании к центру более плотного вещества и вытеснении оттуда более «плавучего». Вероятно, работают оба эффекта. Например, Юпитер в нашу эпоху уменьшается приблизительно на 2 см в год. А сразу после формирования он имел вдвое больший размер, сжимался быстрее и был значительно теплее. В своих окрестностях тогда он играл роль маленького солнышка, на что указывают свойства его галилеевых спутников: чем ближе они к планете, тем плотнее и тем меньше содержат летучих элементов (как и сами планеты в Солнечной системе).

Кроме сжатия планеты как целого, важную роль в гравитационном источнике энергии играет дифференциация недр. Вещество разделяется на плотное и плавучее, и плотное тонет, выделяя свою потенциальную гравитационную энергию в виде тепла. Вероятно, в первую очередь, это конденсация и последующее падение капель гелия сквозь всплывающие слои водорода, а также фазовые переходы самого водорода. Но могут быть явления и поинтереснее: например, кристаллизация углерода – дождь из алмазов (!), правда, выделяющий не очень много энергии, поскольку углерода мало.

Внутреннее строение планет-гигантов пока изучается только теоретически. На прямое проникновение в их недра у нас мало шансов, а методы сейсмологии, т. е. акустического зондирования, к ним пока не применялись. Возможно, когда-нибудь мы научимся просвечивать их с помощью нейтрино, но до этого еще далеко.

К счастью, в лабораторных условиях уже неплохо изучено поведение вещества при тех давлениях и температурах, которые царят в недрах планет-гигантов, что дает основания для математического моделирования их недр. Для контроля адекватности моделей внутреннего строения планет есть методы. Два физических поля, – магнитное и гравитационное, − источники которых находятся в недрах, выходят в окружающее планету пространство, где их можно измерять приборами космических зондов.

На структуру магнитного поля действует много искажающих факторов (околопланетная плазма, солнечный ветер), зато гравитационное поле зависит только от распределения плотности внутри планеты. Чем сильнее тело планеты отличается от сферически симметричного, тем сложнее ее гравитационное поле, тем больше в нем гармоник, отличающих его от простого ньютоновского GM/R 2 .

Прибором для измерения гравитационного поля далеких планет, как правило, служит сам космический зонд, точнее – его движение в поле планеты. Чем дальше зонд от планеты, тем слабее в его движении проявляются мелкие отличия поля планеты от сферически симметричного. Поэтому необходимо запускать зонд как можно ближе к планете. С этой целью с 2016 года рядом с Юпитером работает новый зонд Juno (NASA). Он летает по полярной орбите, чего раньше не было. На полярной орбите высшие гармоники гравитационного поля проявляются заметнее, поскольку планета сжата, а зонд время от времени подходит очень близко к поверхности. Именно это дает возможность измерить высшие гармоники разложения гравитационного поля. Но по этой же причине зонд довольно скоро закончит свою работу: он пролетает через наиболее плотные области радиационных поясов Юпитера, и его аппаратура от этого сильно страдает.

Радиационные пояса Юпитера колоссальны. При большом давлении водород в недрах планеты металлизируется: его электроны обобщаются, теряют связь с ядрами, и жидкий водород становится проводником электричества. Огромная масса сверхпроводящей среды, быстрое вращение и мощная конвекция − эти три фактора способствуют генерации магнитного поля за счет динамо-эффекта. В колоссальном магнитном поле, захватывающем летящие от Солнца заряженные частицы, формируются чудовищные радиационные пояса. В их наиболее плотной части лежат орбиты внутренних галилеевых спутников. Поэтому на поверхности Европы человек не прожил и дня, а на Ио – и часа. Даже космическому роботу нелегко там находиться.

Более удаленные от Юпитера Ганимед и Каллисто в этом смысле значительно безопаснее для исследования. Поэтому именно туда Роскосмос собирается в будущем послать зонд. Хотя Европа с ее подледным океаном была бы намного интереснее.

Ледяные гиганты Уран и Нептун выглядят промежуточными между газовыми гигантами и планетами земного типа. По сравнению с Юпитером и Сатурном у них меньше размер, масса и центральное давление, но при этом их относительно высокая средняя плотность указывает на большую долю элементов группы CNO. Протяженная и массивная атмосфера Урана и Нептуна в основном водородно-гелиевая. Под ней водная с примесью аммиака и метана мантия, которую принято называть ледяной. Но у планетологов принято называть «льдами» сами химические элементы группы CNO и их соединения (H 2 O, NH 3 , CH 4 и т. п.), а не их агрегатное состояние. Так что мантия в большей степени может быть жидкой. А под ней лежит сравнительно небольшое железно-каменное ядро. Поскольку концентрация углерода в недрах Урана и Нептуна выше, чем у Сатурна и Юпитера, в основании их ледяной мантии может лежать слой жидкого углерода, в котором конденсируются кристаллы, т. е. алмазы, оседающие вниз.

Подчеркну, что внутреннее строение планет-гигантов активно обсуждается, и конкурирующих моделей пока довольно много. Каждое новое измерение с борта космических зондов и каждый новый результат лабораторного моделирования в установках высокого давления приводят к пересмотру этих моделей. Напомню, что прямое измерение параметров весьма неглубоких слоев атмосферы и только у Юпитера было осуществлено лишь однажды зондом, сброшенным с «Галилео» (NASA). А все остальное – косвенные измерения и теоретические модели.

Магнитные поля Урана и Нептуна слабее, чем у газовых гигантов, но сильнее, чем у Земли. Хотя у поверхности Урана и Нептуна индукция поля примерно такая же, как у поверхности Земли (доли гаусса), но объем, а значит и магнитный момент намного больше. Геометрия магнитного поля у ледяных гигантов очень сложная, далекая от простой дипольной формы, характерной для Земли, Юпитера и Сатурна. Вероятная причина в том, что генерируется магнитное поле в относительно тонком электропроводящем слое мантии Урана и Нептуна, где конвекционные потоки не обладают высокой степенью симметрии (поскольку толщина слоя много меньше его радиуса).

При внешнем сходстве Уран и Нептун нельзя назвать близнецами. Об этом говорит их разная средняя плотность (соответственно 1,27 и 1,64 г/см 3) и разная интенсивность выделения тепла в недрах. Хотя Уран в полтора раза ближе к Солнцу, чем Нептун, и поэтому получает от него в 2,5 раза больше тепла, он холоднее Нептуна. Дело в том, что Нептун выделяет в своих недрах даже больше тепла, чем получает от Солнца, а Уран не выделяет почти ничего. Поток тепла из недр Урана вблизи его поверхности составляет всего 0,042 ± 0,047 Вт/м 2 , что даже меньше чем у Земли (0,075 Вт/м 2). Уран – самая холодная планета в Солнечной системе, хотя и не самая далекая от Солнца. Связано ли это с его странным вращением «на боку»? Не исключено.

Теперь поговорим о кольцах планет.

Все знают, что «окольцованная планета» − это Сатурн. Но при внимательном наблюдении выясняется, что кольца есть у всех планет-гигантов. С Земли их заметить сложно. Например, кольцо Юпитера мы не видим в телескоп, но замечаем его в контровом освещении, когда космический зонд смотрит на планету с ее ночной стороны. Это кольцо состоит из темных и очень мелких частиц, размер которых сравним с длинной волны света. Они практически не отражают свет, но хорошо рассеивают его вперед. Тонкими кольцами окружены Уран и Нептун.

В общем, двух одинаковых колец у планет не бывает, они все разные.

В шутку можно сказать, что и у Земли есть кольцо. Искусственное. Оно состоит из нескольких сотен спутников, выведенных на геостационарную орбиту. На этом рисунке не только геостационарные спутники, но и те, что на низких орбитах, а также на высоких эллиптических орбитах. Но геостационарное кольцо выделяется на их фоне вполне заметно. Впрочем, это рисунок, а не фото. Сфотографировать искусственное кольцо Земли пока никому не удалось. Ведь его полная масса невелика, а светоотражающая поверхность ничтожна. Едва ли суммарная масса спутников в кольце составит 1000 тонн, что эквивалентно астероиду размером 10 м. Сравните это с параметрами колец планет-гигантов.

Заметить какую-либо взаимосвязь между параметрами колец довольно сложно. Материал колец Сатурна белый как снег (альбедо 60 %), а остальные кольца чернее угля (А = 2-3 %). Все кольца тонкие, а у Юпитера довольно толстое. Все из булыжников, а у Юпитера из пылинок. Структура колец тоже разная: одни напоминают граммофонную пластинку (Сатурн), другие – матрешкообразную кучу обручей (Уран), третьи – размытые, диффузные (Юпитер), а кольца Нептуна вообще не замкнуты и похожи на арки.

В голове не укладывается относительно малая толщина колец: при диаметре в сотни тысяч километров их толщина измеряется десятками метров. Мы никогда не держали в руках столь тонкие предметы. Если сравнить кольцо Сатурна с листом писчей бумаги, то при его известной толщине размер листа был бы с футбольное поле!

Как видим, кольца у всех планет различаются по составу частиц, по их распределению, по морфологии – у каждой планеты-гиганта свое уникальное украшение, происхождение которого мы пока не понимаем. Обычно кольца лежат в экваториальной плоскости планеты и вращаются в ту же сторону, куда вращается сама планета и группа близких к ней спутников. В прежние времена астрономы считали, что кольца вечны, что они существуют от момента зарождения планеты и останутся при ней навсегда. Сейчас точка зрения изменилась. Но расчеты показывают, что кольца не слишком долговечны, что их частицы тормозятся и падают на планету, испаряются и рассеиваются в пространстве, оседают на поверхности спутников. Так что украшение это временное, хотя и долгоживущее. Сейчас астрономы считают, что кольцо – это результат столкновения или приливного разрушения спутников планеты. Возможно, кольцо Сатурна самое молодое, поэтому оно такое массивное и богатое летучими веществами (снегом).

А так может сфотографировать хороший телескоп с хорошей камерой. Но здесь еще мы не видим у кольца почти никакой структуры. Давно была замечена темная «щель» − разрыв Кассини, который более 300 лет назад открыл итальянский астроном Джованни Кассини. Кажется, что в разрыве ничего нет.

Плоскость кольца совпадает с экватором планеты. Иного и быть не может, поскольку у симметричной сплющенной планеты вдоль экватора в гравитационном поле потенциальная яма. На серии снимков, полученных с 2004 по 2009 гг., мы видим Сатурн и его кольцо в разных ракурсах, поскольку экватор Сатурна наклонен к плоскости его орбиты на 27°, а Земля всегда недалеко от этой плоскости. В 2004 г. мы точно оказались в плоскости колец. Сами понимаете, при толщине несколько десятков метров самого кольца мы не видим. Тем не менее, черная полоска на диске планеты ощущается. Это тень кольца на облаках. Она видна нам, поскольку Земля и Солнце с разных направлений смотрят на Сатурн: мы смотрим точно в плоскости кольца, но Солнце освещает немножко под другим углом и тень кольца ложится на облачный слой планеты. Раз есть тень, значит в кольце довольно плотно упакованное вещество. Тень кольца исчезает только в дни равноденствия на Сатурне, когда Солнце оказывается точно в его плоскости; и это независимо указывает на малую толщину кольца.

Кольцу Сатурна посвящено много работ. Джеймс Клерк Максвелл, тот самый, что прославился своими уравнениями электромагнитного поля, исследовал физики кольца и показал, что оно не может быть единым твердым предметом, а должно состоять из мелких частиц, иначе центробежная сила его разорвала бы. Каждая частица летит по своей орбите – чем ближе к планете, тем быстрее.

Взгляд на любой предмет с другой стороны всегда полезен. Там, где в прямом свете мы видели черноту, «провал» в кольце, здесь мы видим вещество; просто оно другого типа, по-другому отражает и рассеивает свет

Когда космические зонда прислали нам снимки кольца Сатурна, нас поразила его тонкая структура. Но еще в XIX в выдающиеся наблюдатели на обсерватории Пик-дю-Миди во Франции именно эту структур видели глазом, но им тогда никто особенно не поверил, потому что никто кроме них такие тонкости не замечал. Но оказалось, кольцо Сатурна именно такое. Объяснение этой тонкой радиальной структуре кольца специалисты по звездной динамике ищут в рамках резонансного взаимодействия частиц кольца с массивными спутниками Сатурна вне кольца и мелкими спутниками внутри кольца. В целом теория волн плотности справляется с задачей, но до объяснения всех деталей еще далеко.

На верхнем фото дневная сторона кольца. Зонд пролетает через плоскость кольца, и мы видим на нижнем фото, как оно повернулось к нам ночной стороной. Вещество в делении Кассини стало вполне заметно с теневой стороны, а яркая часть кольца, напротив, потемнела, поскольку она плотная и непрозрачная. Там, где была чернота, появляется яркость, потому что мелкие частицы не отражают, но рассеивают свет вперед. Эти снимки показывают, что вещество есть везде, просто частицы разного размера и структуры. Какие физические явления сепарируют эти частицы, мы пока не очень понимаем. На верхнем снимке виден Янус − один из спутников Сатурна.

Надо сказать, что хоть и близко от кольца Сатурна пролетали космические аппараты, тем не менее ни одному из них не удалось увидеть реальные частицы, составляющие кольцо. Мы видим лишь общее их распределение. Отдельные глыбы увидеть не удается, не рискуют аппарат внутрь кольца запускать. Но когда-нибудь это придется сделать.

С ночной стороны Сатурна сразу появляются те слабо видимые части колец, которые в прямом свете не видно.

Это не настоящий цветной снимок. Цветами здесь показан характерный размер тех частиц, которые составляют ту или иную область. Красные – мелкие частицы, бирюзовые – более крупные.

В ту эпоху, когда кольцо разворачивалась ребром к Солнцу, тени от крупных неоднородностей ложатся на плоскость кольца (верхнее фото). Самая длинная тень здесь − от спутника Мимас, а многочисленные мелкие пики, которые в увеличенном изображении показаны на врезке, однозначного объяснения пока не получили. За них ответственны выступы километрового размера. Не исключено, что некоторые из них – это тени от наиболее крупных камней. Но квазирегулярная структура теней (фото внизу) более соответствует временным скоплениям частиц, возникающим в результате гравитационной неустойчивости.

Вдоль некоторых колец летают спутники, так называемые «сторожевые псы» или «пастушьи собаки», которые своей гравитацией удерживают от размытия некоторые кольца. Причем сами спутники довольно интересные. Один движется внутри тонкого кольца, другой снаружи (например, Янус и Эпиметей). У них орбитальные периоды чуть-чуть разные. Внутренний ближе к планете и, следовательно, быстрее облетает ее, догоняет наружный спутник и за счет взаимного притяжения меняет свою энергию: наружный притормаживается, внутренний ускоряется, и они меняются орбитами – тот, что затормозил переходит на низкую орбиту, а тот, что ускорился – на высокую. Так они делают несколько тысяч оборотов, а затем вновь меняются местами. Например, Янус и Эпиметей меняются местами раз в 4 года.

Несколько лет назад открыли самое далекое кольцо Сатурна, о котором вообще не подозревали. Это кольцо связано со спутником Феба, с поверхности которого улетает пыль, заполняя область вдоль орбиты спутника. Плоскость вращения этого кольца, как и самого спутника, не связана с экватором планеты, поскольку из-за большого расстояния гравитация Сатурна воспринимается как поле точечного объекта.

У каждой гигантской планеты есть семейство спутников. Особенно богаты ими Юпитер и Сатурн. На сегодняшний день у Юпитера их 69, а у Сатурна 62 и регулярно обнаруживаются новые. Нижняя граница массы и размера для спутников формально не установлена, поэтому для Сатурна это число условное: если вблизи планеты обнаруживается объект размером 20-30 метров, то что это – спутник планеты или частица ее кольца?

В любом многочисленном семействе космических тел мелких всегда больше, чем крупных. Спутники планет – не исключение. Мелкие спутники – это, как правило, глыбы неправильной формы, в основном состоящие изо льда. Имея размер менее 500 км, они не в состоянии своей гравитацией придать себе сфероидальную форму. Внешне они очень похожи на астероиды и ядра комет. Вероятно, многие из них таковыми и являются, поскольку движутся вдали от планеты по весьма хаотическим орбитам. Планета могла захватить их, а через некоторое время может потерять.

С малыми астероидоподобными спутниками мы пока не очень близко знакомы. Детальнее других исследованы такие объекты у Марса − два его небольших спутника, Фобос и Деймос. Особенно пристальное внимание было к Фобосу; на его поверхность даже зонд хотели отправить, но пока не получилось. Чем внимательнее присматриваешься к любому космическому телу, тем больше в нем загадок. Фобос – не исключение. Посмотрите, какие странные структуры идут вдоль его поверхности. Уже несколько физических теорий существует, пытающихся объяснить их образование. Эти линии из мелких провалов и борозд похожи на меридианы. Но физической теории их формирования пока никто не предложил.

Все мелкие спутники несут на себе многочисленные следы ударов. Время от времени они сталкиваются друг с другом и с приходящими издалека телами, дробятся на отдельные части, а могут и объединяться. Поэтому восстановить их далекое прошлое и происхождение будет нелегко. Но среди спутников есть и те, что генетически связаны с планетой, поскольку движутся рядом с ней в плоскости ее экватора и, скорее всего имеют общее с ней происхождение.

Особый интерес представляют крупные планетоподобные спутники. У Юпитера их четыре; это так называемые «галилеевы» спутники – Ио, Европа, Ганимед и Каллисто. У Сатурна выделяется своим размером и массой могучий Титан. Эти спутники по своим внутренним параметрам почти неотличимы от планет. Просто их движение вокруг Солнца контролируется еще более массивными телами – материнскими планетами.

Вот перед нами Земля и Луна, а рядом в масштабе спутник Сатурна Титан. Замечательная маленькая планета с плотной атмосферой, с жидкими большими «морями» из метана, этана и пропана на поверхности. Моря из сжиженного газа, который при температуре поверхности Титана (–180 °C) находятся в жидком виде. Очень привлекательная планета, потому что на ней будет легко и интересно работать – атмосфера плотная, надежно защищает от космических лучей и по составу близка к земной атмосфере, поскольку тоже в основном состоит из азота, хотя и лишена кислорода. Вакуумные скафандры там не нужны, поскольку атмосферное давление почти как на Земле, даже чуть больше. Тепло оделись, баллончик с кислородом за спину, и вы легко будете работать на Титане. Кстати, это единственный (кроме Луны) спутник, на поверхность которого удалось посадить космический аппарат. Это был «Гюйгенс», доставленный туда на борту «Кассини» (NASA, ESA), и посадка была довольно удачной.

Вот единственный снимок, сделанный на поверхности Титана. Температура низкая, поэтому глыбы – это очень холодный водяной лед. Мы в этом уверены, потому что Титан вообще по большей части состоит из водяного льда. Цвет красновато-рыжеватый; он естественный и связан с тем, что в атмосфере Титана под действием солнечного ультрафиолета синтезируется довольно сложные органические вещества под общим названием «толины». Дымка из этих веществ пропускает к поверхности в основном оранжевый и красный цвет, довольно сильно его рассеивая. Поэтому изучать из космоса географию Титана довольно сложно. Помогает радиолокация. В этом смысле ситуация напоминает Венеру. Кстати, и циркуляция атмосферы на Титане тоже венерианского типа: по одному мощному циклону в каждом из полушарий.

Спутники других планет-гигантов тоже оригинальны. Это Ио – ближайший спутник Юпитера. На таком же расстоянии находится, что и Луна от Земли, но Юпитер – гигант, а значит, действует на свой спутник очень сильно. Юпитера расплавило недра спутника и на нем мы видим множество действующих вулканов (черные точки). Видно, что вокруг вулканов выбросы ложатся по баллистическим траекториям. Ведь там практически нет атмосферы, поэтому то, что выброшено из вулкана, летит по параболе (или по эллипсу?). Малая сила тяжести на поверхности Ио создает условия для высоких выбросов: 250-300 км вверх, а то и прямо в космос!

Второй от Юпитера спутник – Европа. Покрыт ледяной корой, как наша Антарктида. Под корой, толщина которой оценивается в 25-30 км, океан жидкой воды. Ледяная поверхность покрыта многочисленными древними трещинами. Но под влиянием подледного океана пласты льда медленно перемещаются, напоминая этим дрейф земных материков.

Трещины во льду время от времени открываются, и оттуда фонтанами вырывается вода. Теперь мы это точно знаем, поскольку видели фонтаны с помощью космического телескопа «Хаббл». Это открывает перспективу исследовать воду Европы. Кое-что о ней мы уже знаем: это соленая вода, хороший проводник электричества, на что указывает магнитное поле. Ее температура, вероятно, близка к комнатной, но о ее биологическом составе мы пока ничего не знаем. Хотелось бы зачерпнуть и проанализировать эту воду. И экспедиции с этой целью уже готовятся.

Другие крупные спутники планет, включая нашу Луну, не менее интересны. По сути, они представляют самостоятельную группу планет-спутников.

Здесь в одном масштабе показаны наиболее крупные спутники в сравнении с Меркурием. Они ничем ему не уступают, а по своей природе некоторые из них даже более интересны.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама