THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Представим себе поверхность и сидящего на ней муравья. Удастся ли муравью доползти до обратной стороны поверхности - образно говоря, до её изнанки, - не перелезая через край? Конечно же нет!

Первый пример односторонней поверхности, в любое место которой может доползти муравей, не перелезая через край, привел Мёбиус в 1858г.

М.Эшер "Лист Мёбиуса II" «Переход» через ленту Мебиусав другое измерение

Август Фердинанд Мёбиус (1790-1868) - ученик «короля» математиков Гаусса. Мёбиус был первоначально астрономом, как Гаусс и многие другие, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров XIX века.

В возрасте 68 лет Мёбиусу удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых - лист Мёбиуса (или лента). Мёбиус придумал ленту, когда наблюдал за горничной, неправильно одевшей на шею свой платок.

М.Эшер "Лист Мёбиуса"

Изготовим лист Мёбиуса: возьмите бумажную полоску-длинный узкий прямоугольник АВСD (удобные размеры: длина 30 см, ширина 3 см). Перекрутив один конец полоски на 180º, склейте из нее кольцо (точки А и С, В и D).Модель готова.

Модель ленты Мебиуса может быть легко создана из полоски бумаги, повернув один из концов полоски вполоборота и соединив его с другим концом в замкнутую фигуру. Если начать рисовать карандашом линию на поверхности ленты, то линия уйдет вглубь фигуры и пройдет под начальной точкой линии, как бы уйдя на "другую сторону" ленты. Если продолжать линию, то она вернется в начальную точку. При этом длина нарисованной линии будет вдвое больше длины полоски бумаги. Этот пример показывает, что у ленты Мебиуса лишь одна сторона и одна граница.

В Евклидовом пространстве, фактически, существует два типа ленты Мебиуса, развернутой вполоборота: одна - развернутая по часовой стрелке, другая - против часовой стрелки.

Лист Мебиуса преподнесет вам сюрприз, если вы попытаетесь его разрезать. Разрежьте лист по центральной линии. Что у вас получилось? Вместо того, чтобы развалиться на два куска, лента разворачивается в длинную связанную замкнутую полоску. Полученную после первого разреза ленту снова разрежьте по центральной линии. Перед последним сжатием ножниц попробуйте угадать, что будет?

Чтобы получить ленту Мебиуса, мы переворачивали полоску бумаги на 180º, на пол оборота. Теперь полоску скрутите на 360º, полный оборот. Склейте, затем разрежьте её по центральной линии. Какой получиться результат, трудно предугадать.

А теперь попробуем изготовить такую модель: в полосе АВСD прорезать щель и продеть сквозь неё один конец. Повернув, на пол оборота, склейте, как показано на рисунке.

А теперь продолжите разрез вдоль всей ленты. Что у вас получилось?

Таинственный и знаменитый лист мебиуса, появившийся в 1858 году, волновал художников и скульпторов. Много рисунков с изображениями листа Мебиуса оставил известный голландский художник Морис Эшер (см. статью Математическое искусство М.К. Эшера).

Целую серию вариантов листа Мебиуса можно встретить в скульптуре.

Роман с камнем. Праща Мебиуса. С. Карпиков Памятник ленте Мёбиуса в Москве. А. Налич


Парадокс и совершество. А. Эткало Геометрические скульптуры Мерит Расмуссен

г. Минск. Скверик около Центральной Научной библиотеки имени Якуба Коласа.

Архитетурные решения с использованием идеи ленты Мебиуса:



Невероятный проект новой библиотеки в Астане, Казахстан

Настольные композиции:




Даже есть мебель в виде ленты Мёбиуса


Ювелирные украшения в виде ленты Мёбиуса:




Есть гипотеза, что спираль ДНК человека сама по себе тоже является фрагментом ленты Мебиуса.


Международный символ переработки представляет собой Лист Мёбиуса .

Лист Мёбиуса также постоянно встречается в научной фантастике , например в рассказе Артура Кларка «Стена Темноты». Иногда научно-фантастические рассказы (вслед за физиками-теоретиками) предполагают, что наша Вселенная может быть некоторым обобщенным листом Мёбиуса. Также кольцо Мёбиуса постоянно упоминается в произведениях уральского писателя Владислава Крапивина, цикл «В глубине Великого Кристалла» (напр. «Застава на Якорном Поле. Повесть»). В рассказе «Лист Мёбиуса» автора А. Дж. Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда. По мотивам рассказа был снят фантастический фильм «Мёбиус» режиссёра Густаво Москера. Также идея ленты Мебиуса используется в рассказе М. Клифтона «На ленте Мебиуса». С лентой Мёбиуса сравнивается течение романа современного русского писателя Алексея А. Шепелёва «Echo» (СПб.: Амфора, 2003). Из аннотации к книге: «„Echo“ — литературная аналогия кольца Мёбиуса: две сюжетные линии — „мальчиков“ и „девочек“ — переплетаются, перетекают друг в друга, но не пересекаются».

Представим себе поверхность и сидящего на ней муравья. Удастся ли муравью доползти до обратной стороны поверхности – образно говоря, до её изнанки, - не перелезая через край? Конечно же нет!

Август Фердинанд Мёбиус (1790-1868)

Первый пример односторонней поверхности, в любое место которой может доползти муравей, не перелезая через край, привел Мёбиус в 1858г.

Лента Мебиуса, которую также называют петлей, поверхностью или листом, – это объект изучения такой математической дисциплины, как топология, исследующей общие свойства фигур, сохраняющихся при таких непрерывных преобразованиях, как скручивание, растяжение, сжатие, изгибание и других, не связанных с нарушением целостности. Удивительной и неповторимой особенностью такой ленты является то, что он имеет всего одну сторону и край и никак не связаны с ее расположением в пространстве. Лист Мебиуса является топологическим, то есть непрерывным объектом с простейшей односторонней поверхностью с границей в обычном Евклидовом пространстве (3-мерном), где возможно из одной точки такой поверхности, не пересекая края, попасть в любую другую.
Август Фердинанд Мёбиус (1790-1868) – ученик «короля» математиков Гаусса. Мёбиус был первоначально астрономом, как Гаусс и многие другие, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров XIX века.

В возрасте 68 лет Мёбиусу удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых – лист Мёбиуса (или лента). Мёбиус придумал ленту, когда наблюдал за горничной, неправильно одевшей на шею свой платок.
В Евклидовом пространстве, фактически, существует два типа ленты Мебиуса, развернутой вполоборота: одна - развернутая по часовой стрелке, другая - против часовой стрелки.

Ленте Мебиуса присущи следующие свойства, не меняющиеся при ее сжимании, разрезании вдоль или сминании:

1. Наличие одной стороны. А. Мебиус в своем труде «Об объеме многогранников» описал геометрическую поверхность, названную затем в его честь, обладающую всего одной стороной. Проверить это довольно просто: берем ленту или лист Мебиуса и стараемся закрасить внутреннюю сторону одним цветом, а внешнюю – другим. Не суть важно, в каком месте и направлении было начато окрашивание, вся фигура будет закрашена одним цветом.
2. Непрерывность выражается в том, что любую точку этой геометрической фигуры можно соединить с любой другой ее точкой, не пересекая границы поверхности Мебиуса.
3. Связность, или двухмерность, заключается в том, что при разрезании ленты вдоль, из нее не получится несколько разных фигур, и она остается цельной.

4. В ней отсутствует такое важное свойство, как ориентированность. Это значит, что человек, идущий по этой фигуре, вернется к началу своего пути, но только в зеркальном отражении самого себя. Таким образом, бесконечная лента Мебиуса может привести к вечному путешествию.
5. Особый хроматический номер, показывающий, какое максимально возможное число областей на поверхности Мебиуса, можно создать так, чтобы у любой из них была общая граница со всеми другими. Лента Мебиуса имеет хроматический номер – 6, а вот кольцо из бумаги – 5.

Сегодня лист Мебиуса и его свойства широко применяются в науке, служа основой для построения новых гипотез и теорий, проведения исследований и экспериментов, создания новых механизмов и устройств. Так, существует гипотеза, согласно которой Вселенная - это огромнейшая петля Мебиуса. Косвенно об этом свидетельствует и теория относительности Эйнштейна, согласно которой даже полетевший прямо корабль может вернуться в ту же временную и пространственную точку, откуда стартовал.

Другая теория рассматривает ДНК как часть поверхности Мебиуса, что объясняет сложности с прочтением и расшифровкой генетического кода. Кроме всего прочего, такая структура дает логичное объяснение биологической смерти – замкнутая на самой себе спираль приводит к самоуничтожению объекта. По мнению физиков, многие оптические законы основываются на свойствах листа Мебиуса. Так, например, зеркальное отражение - это особый перенос во времени и человек видит перед собой своего зеркального двойника.

Если вас заинтересовала лента Мебиуса, как сделать ее модель, вам подскажет небольшая инструкция:
1. Для изготовления ее модели потребуются: - лист обычной бумаги;
- ножницы;
- линейка.
2. Отрезаем полосу от листа бумаги так, чтобы ее ширина была в 5-6 раз меньше длины.
3. Полученную бумажную полоску раскладываем на ровной поверхности. Один конец придерживаем рукой, а другой поворачиваем на 180* так, чтобы полоса перекрутилась и изнанка стала лицевой стороной.
4. Склеиваем концы перекрученной полосы так, как показано на рисунке.

Лента Мебиуса готова.
5. Возьмите ручку или маркер и посередине ленты начните рисовать дорожку. Если вы сделали все правильно, то вернетесь в ту же точку, откуда начали чертить линию.

Для того чтобы получить наглядное подтверждение тому, что лента Мебиуса - односторонний объект, карандашом или ручкой попробуйте закрасить какую-либо ее сторону. Через некоторое время вы увидите, что закрасили ее полностью.

Архитетурные решения с использованием идеи ленты Мебиуса:

Ювелирные украшения в виде ленты Мёбиуса:




Существуют технические применения ленты Мёбиуса. Полоса ленточного конвейера выполняется в виде ленты Мёбиуса, что позволяет ему работать дольше, потому что вся поверхность ленты изнашивается равномерно. Также в системах записи на непрерывную плёнку применяются ленты Мёбиуса (чтобы удвоить время записи). Во многих матричных принтерах красящая лента также имеет вид листа Мёбиуса для увеличения её ресурса.

Устройство под названием резистор Мёбиуса - это недавно изобретённый электронный элемент, который не имеет собственной индуктивности.
Еще применяются ленты Мёбиуса в системах записи на непрерывную плёнку (чтобы удвоить время записи), в матричных принтерах красящая лента также имела вид листа Мёбиуса для увеличения срока годности.

Лист Мёбиуса служил вдохновением для скульптур и для графического искусства. Эшер был одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту. Одна из известных - «Лист Мёбиуса II», показывает муравьёв, ползающих по поверхности ленты Мёбиуса.

Лист Мёбиуса является эмблемой серии научно-популярных книг серии «Библиотечка „Квант“». Он также постоянно встречается в научной фантастике, например, в рассказе Артура Кларка «Стена темноты». Иногда научно-фантастические рассказы (вслед за физиками-теоретиками) предполагают, что наша Вселенная может быть некоторым обобщённым листом Мёбиуса. Также кольцо Мёбиуса постоянно упоминается в произведениях уральского писателя Владислава Крапивина, цикл «В глубине Великого Кристалла» (например, «Застава на Якорном Поле. Повесть»). В рассказе «Лист Мёбиуса» автора А. Дж. Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда. По мотивам рассказа был снят фантастический фильм «Мёбиус» режиссёра Густаво Москера. Также идея ленты Мёбиуса используется в рассказе М. Клифтона «На ленте Мёбиуса».

Лента Мёбиуса используется как способ перемещения в пространстве и времени Гарри Кифа, главного героя романа Брайана Ламли «Некроскоп».

Лента Мёбиуса играет важную роль в фантастическом романе Р. Желязны «Двери в песке».

В книге Е. Наумова «Полураспад» (1989 год) интеллигент-алкоголик путешествует по стране, становясь на ленту Мёбиуса.

Москва, «Лента Мёбиуса»

С лентой Мёбиуса сравнивается течение романа современного русского писателя Алексея Шепелёва «Echo». Из аннотации к книге: «„Echo“ - литературная аналогия кольца Мёбиуса: две сюжетные линии - „мальчиков“ и „девочек“ - переплетаются, перетекают друг в друга, но не пересекаются».

Лента Мёбиуса также встречается в эссе Харуки Мураками «Облади Облада» из книги-сборника «Радио Мураками», выпущенного в 2010 году, где лента Мёбиуса образно сравнивается с бесконечностью.

В визуальной новелле CHARON "Makoto Mobius" главный герой Ватаро пытается спасти одноклассницу от смерти, используя магический артефакт - ленту Мёбиуса.

В 1987 году советский джазовый пианист Леонид Чижик записал альбом «Лента Мёбиуса», в который вошла и одноимённая композиция.

Гоночный трек в одном из эпизодов (7 сезон 14 серия, 11 минута) мультсериала «Футурама» представляет собой ленту Мёбиуса.

Существуют технические применения ленты Мёбиуса. Полоса ленточного конвейера, выполненная в виде ленты Мёбиуса, будет работать дольше, потому что вся поверхность ленты изнашивается равномерно. Также в системах записи на непрерывную плёнку применяются ленты Мёбиуса (чтобы удвоить время записи). Во многих матричных принтерах красящая лента также имеет вид ленты Мёбиуса для увеличения её ресурса.

Также над входом в институт ЦЭМИ РАН находится мозаичный горельеф «Лента Мёбиуса» работы архитектора Леонида Павлова в соавторстве с художниками Э. А. Жареновой и В. К. Васильцовым (1976)

Давайте поэкспериментируем: вырежем из бумаги полоску, склеим концы ленты, но не так, как обычно, а с поворотом на 180 градусов. У нас получилась лента Мёбиуса.

Немецкий астроном и математик Август Фердинанд Мёбиус взял однажды бумажную ленту, повернул один её конец на пол-оборота (то есть на 180 градусов), а потом склеил его с другим концом. То ли от скуки он это сделал, то ли ради научного интереса - теперь уже неизвестно. Зато доподлинно известно, что именно так и появилась ещё в прошлом веке знаменитая лента Мёбиуса.

Свойства ленты Мёбиуса

Чем же она знаменита? А тем, что поверхность ленты Мёбиуса имеет только одну сторону. Это легко проверить. Возьмите карандаш и начните закрашивать ленту в каком-нибудь направлении. Вскоре вы вернётесь в то место, откуда начали. А теперь поглядите внимательно: закрашенной оказалась вся лента целиком! А ведь вы её не переворачивали, чтобы закрасить с другой стороны. Да и не смогли перевернуть, даже если бы очень захотели. Потому как поверхность ленты Мёбиуса - односторонняя . Такое вот у нее любопытное свойство наблюдается.

Поработаем ножницами ещё раз: проткнём эту ленту и аккуратно разрежем её вдоль - точно посередине. «Ну вот, - подумаете вы, - сейчас получатся два отдельных кольца…».

Но что это? Вместо двух колец, получается одно! Причём оно больше и тоньше первоначального, и перекручено дважды. «Такого не бывает», - скажете вы. Бывает.

Как Вы думаете, что станет с этой фигурой, если её снова разрезать? Может быть, снова выйдет одна целая, но перекрученная полоска бумаги? Нет. На этот раз получатся уже два сцепленных кольца.

Вот такие интересные метаморфозы таит в себе лента Мебиуса. Вы можете показать друзьям эти явления, выдавая их за фокусы, тогда как на самом деле вы просто продемонстрируете им математические законы.

Простая полоска бумаги, но перекрученная всего лишь раз и склеенная затем в кольцо, сразу же превращается в загадочную ленту Мёбиуса и приобретает удивительные свойства. Такие свойства поверхностей и пространств изучает специальный раздел математики - топология .
Наука эта настолько сложная, что ее в школе не проходят. Только в институтах (и то не во всех!). Но кто знает, вдруг вы станете со временем знаменитым топологом и совершите не одно замечательное открытие. И быть может, какую-нибудь замысловатую поверхность назовут вашим именем!

Лента Мёбиуса в архитектуре

А где в реальной жизни можно увидеть ленту Мёбиуса? Многие архитекторы в своих проектах пытаются использовать загадочную ленту. Так бельгийский архитектор Винсент Каллебо для парка в Тайване разработал новое здание, которое напоминает ленту Мебиуса.

Сооружение имеет форму ласточкиного гнезда и начинается с треугольника, а затем закручивается в эллипс. Внутри строения можно полюбоваться растениями, предметами искусства или просто совершить прогулку.

Видео демонстрирует загадки ленты Мёбиуса

Александр Пославский

Артемий Бабий

Это небольшой очерк о малоизвестных сюрпризах, которые встречаются при изучении геометрии ленты Мёбиуса.

В литературе встречается несколько названий: проективная плоскость, односторонняя поверхность, лента Мёбиуса, петля Мёбиуса, кольцо Мёбиуса. По укоренившейся у меня привычке в дальнейшем я буду называть предмет нашего изучения кольцом Мёбиуса.

Коротко об общеизвестных сюрпризах кольца Мёбиуса . Это необходимо для понимания того, о чем будет рассказано далее.

  • Если разрезать кольцо Мёбиуса вдоль по средней линии, то в итоге получится кольцо с двойным полуоборотом. Такое кольцо называют *Афганской лентой* и оно является уже двусхторонней поверхностью с двумя краями (кромками).
  • Если разрезать кольцо Мёбиуса вдоль края, отступив на 1/3 его ширины, то в итоге получатся два кольца разных размеров: меньшее - кольцо Мёбиуса ( односторонняя поверхность) и большее - *Афганская лента * (двусторонняя поверхность). Эти кольца сцеплены друг с другом.

А сейчас о новых сюрпризах. Они малоизвестны для широкой публики. А самые любознательные читатели могут повторить нижеописанные опыты. Автор очерка не являеется профессиональным математиком-топологом, всё придумал самостоятельно, без посторонней помощи. Поэтому результаты опытов и идеи, высказанные в этом очерке, предлагаются для обсуждения с его автором.

Сюрприз №1

Сначала я попробовал склеить кольцо Мёбиуса не из одной, а из двух полосок бумаги, предварительно уложив их в стопку (Фото 1). Получилось нечто похожее на настоящее кольцо Мёбиуса (Фото2):

Почему “нечто похожее”? Потому что, когда я растянул это кольцо, оказалось, что в результате склейки получилась “ (Фото 3).

И в чем тут сюрприз? А в том, что при растягивании исходного кольца, не нарушалась его целостность. Это значит, что достаточно просто складывается в обратном порядке в исходное кольцо (псевдокольцо) Мёбиуса (Фото 4).

Сейчас время вспомнить, что “афганская лента” получается при разрезании настоящего кольца Мёбиуса по средней линии. Так вот, полученная при разрезании, так же просто складывается в псевдокольцо Мёбиуса . Т.е., разрезав кольцо Мёбиуса (далее - кМ ) по средней линии и получив “афганскую ленту” (а.л.” ) , можно уже полученную а.л. собрать в псевдокольцо Мёбиуса (далее - ПкМ ). Вы можете просто склеить “а.л.” и сложить ее в ПкМ . Проверено на практике.

Сюрприз №2

Этот сюрприз является продолжением сюрприза 1 . Я склеил уже три бумажные полоски по форме кМ , предварительно уложив их в стопку (Фото 5 и 6).

Получился некий “бутерброд” в форме кМ (Фото 7) . Если растянуть этот “бутерброд” , то он разложится на два кольца: меньшее - это кМ и большее - это “а.л.” , сцепленные друг с другом (Фото 8).

Но такой же результат получается при разрезании кМ по 1 / 3 его ширины! Как и в первом случае, эти два кольца возможно собрать в первоначальное состояние “бутерброда” . Сначала “а.л.” укладывается в ПкМ (Фото 9) , а затем кМ помещается в середину ПкМ (Фото 10). Проверено на практике.

Удивительно, но, разрезав уже “бутерброд” по 1 / 3 ширины, можно собрать новый, более сложный “бутерброд” . Теоретически такое деление “бутербродов” и их собирание можно продолжать... ну очень много раз. В итоге получится многослойный “бутерброд” , состоящий из многих слоёв “афганских лент” и одного кольца Мёбиус а , расположенного в середине “бутерброда” .

Для более образного представления многослойного (бутербродного) строения псевдокольца Мёбиуса предлагаю два рисунка из серии “математики шутят”:

На примере “бутерброда” (Фото 7,10) можно легко и зримо понять ещё одно свойство односторонней поверхности (проективной плоскости): нельзя создать две , параллельные друг к другу, однносторонние поверхности (во всяком случае в нашем трёхмерном, эвклидовом, пространстве). Одна из них обязательно получится двухсторонней.

Здесь я сделаю небольшое отступление. В Интернете я встретил описание эксперимента с кольцом Мёбиуса . Выглядел он так: на полимерную плёнку в форме кМ наносился металлический слой. Над полученным образцом проводились различные действия, считая что проводятся опыты над кМ . Строго говоря, опыты проводились над вышеописанным “бутербродом” , где рабочий металлический слой являлся “афганской лентой” , а кольцом Мёбиуса была несущая полимерная плёнка.

Возвращаясь к теме, хочу заметить, что я тоже хотел поэкспериментировать с кМ . Но меня не устраивала несовершенная форма кМ , полученная из прямоугольных полосок. Эта “прямоугольная” конструкция имеет, как минимум, три зоны деформации, которые четко проявляются при уплощении кМ . Поэтому я посчитал, что кМ , собранные на основе S-образных полосок, более технологичны в работе(Фото 11 и 12).

Чтобы получить кМ изS- образной полоски достаточно состыковать концы полоски и склеить их. Причем, в зависимости от того в какую сторону вы будете перегибать полоску, будет получаться лево- или правозакрученный вариант кМ . Так же просто получается и вышеописанный “бутерброд” : делается стопка из 3 S -образных полосок, сводятся их концы и поочередно склеиваются.

Опыты с разрезанием кольца Мёбиуса и собиранием “бутербродов” с этим вариантом более наглядны и сборка получается очень легко.

“Бутерброд” , полученный из трех полосок может послужить моделью для создания конденсатора в форме кМ . Только надо понимать, что в начале необходимо создать кМ из металлической фольги (внутренняя пластина-электрод), а уже на него наносить слои диэлектрика и металлической плёнки (внешняя пластина-электрод). Хотя здесь возможны варианты не с кМ , а с ПкМ и это потребует несколько иного подхода.

Я не знаю, будет ли такая конструкция конденсатора иметь преимущества перед традиционной, но считаю, что она будет интересна для тех, кто занимается торсионными полями. Почему? Это уже тема для дискуссии с автором очерка.

Сюрприз №3

Продолжим. Несмотря на полученный результат, у меня осталась неудовлетворенность несовершенством формы полученного таким способом кМ . Размышляя над этой проблемой, я вспомнил, что кМ относится к торовым поверхностям. Так как у меня с пространственным воображением напряг и мне необходимо всё увидеть глазами и потрогать руками, то я взял кольцо Мёбиуса и оклеил его бумажными кольцами. Получилась вот такая конструкция (Фото 13).

И где здесь обещанный сюрприз? Рассматривая полученный “тор” , я открыл (заостряю - для себя; возможно всё выше- и нижеописанное давно известно читателям этого опуса), что кольцо Мёбиуса не делит внутренний объём тора на две изолированные друг от друга полости. Другими словами: из любой точки, находящейся внутри тора со встроенным в него кМ , можно попасть в любую другую точку внутри, не пересекая плоскость кМ и поверхность тора.

Для наглядности представим себе тор в виде спасательного резинового круга внутри которого находится перегородка в виде кМ . Давление воздуха внутри круга с перегородкой в форме кМ будет распределятся равномерно по всему объёму независимо от того, где будет располагаться ниппель. Кстати, фото 13 очень наглядно моделирует форму магнитного поля вокруг продольной катушки Мёбиуса .

Теоретически принцип построения идеального торового кольца Мёби уса достаточно прост, но практическое исполнение модели торового кМ сопряжено с определёнными техническими трудностями.

Для практического изготовления торовых кМ более всего подходит распечатка на 3-D принтере.

Итак, сюрпризы продолжаются

Сейчас наступило время поговорить о таком замечательном геометрическом теле как ТОР.

Как образуется открытый ТОР ? Правильно, открытый ТОР образуется при вращении торообразующей окружности вокруг оси, находящейся вне этой окружности и имеет вот такой вид (Фото14).

Еще различают пиковый ТОР . Это когда большая ось вращения является касательной к торообразующей окружности. По-простому - бублик без дырки. А также закрытый (осевой) ТОР , когда ось вращения пересекает торообразующую окружность. Хороший пример - округлое яблоко.

Для того, чтобы получить кМ в ТОР е, обозначим в торообразующем круге диаметр (два радиус-вектора). А сейчас заставим торообразующий круг вращаться не только вокруг внешней оси, а одновременно и вокруг внутренней оси ТОР а. За полный оборот вокруг внешней оси круг должен одновременно повернуться на полоборота вокруг внутренней оси. Тогда диаметр (два радиус-вектора) опишет плоскость в виде кМ (Фото 15) .

Но это кМ получено в воображаемом опыте. А как же получить его в реале, не имея в наличии 3-D принтер? Вы можете придумать свой способ, отличный от моего. Я же поступил следующим образом. На поверхности открытого ТОР а (из детской пирамидки) нарисовал траекторию движения радиус-векторов (Фото 16) . Затем взял латунную проволоку, аккуратно обогнул её вокруг ТОР а по этой траектории и получил две половинки края (кромки) торового кМ (Фото 17).

Затем соединил их с помощью двух трубочек, а пространство между ветками полученной петли заполнил отрезками изоленты (Фото 18 и 19).

Кольцо Мёбиуса в ТОР е можно получить и с помощью одного радиус-вектора. При этом он должен одновременно сделать два оборота вокруг внешней оси и полный оборот вокруг внутренней оси. И здесь становятся понятными две вещи: первое - кМ имеет ось симметрии (или среднюю линию) и второе - почему, если разрезать кМ по средней линии, получается кольцо с двойным полуоборотом (*Афг aнская лента* ). Просто представьте себе, что нарисует единичный радиус-вектор при первом обороте вокруг внешней оси, и что при втором.

Внимательный читатель, склеивая кМ и затем разрезая его по средней линии, мог заметить что при этом ножницы совершают один оборот. Если же резать кМ по 1 / 3 ширины, то ножницы совершают уже два оборота.

КМ сохраняет свойства односторонней поверхности и при большем количестве полуоборотов. Главное условие - количество полуоборотов должно быть нечетным.

Такой лист Мёбиуса или кольцо Мёбиуса , как кому нравится, я назвал двухвекторным. Зачем? А затем, что такое кольцо строится двумя радиус-векторами. Ну и что? А то, что...

Сюрприз №4

В торе можна создавать трёх-, четырёх-, ...,N -векторные кольца Мёбиуса . Взгляните на Фото 20. Оно иллюстрирует принцип создания трехвекторного кольца Мёбиуса.

В торообразующей окружности показаны три радиус-вектора - А, В, С . Вращая эту окружность вокруг внешней оси и одновременно закручивая её вокруг внутренней так, чтобы при завершении оборота вектор А состыковался с вектором В (соотвтственно вектор В к С , а С к А ), радиус-векторы опишут (создадут) одностороннюю поверхность в виде трехвекторного (трёхлепесткового) кольца Мёбиуса .

Это универсальный метод получения N-векторных односторонних поверхностей и они будут обладать всеми свойствами обычного кМ.

При таком подходе к построению торовых кМ особое значение приобретает средняя линия (по другому - линия сопряжения). В этом случае линия сопряжения совпадает с внутренней осью тора. Если, к примеру, 3-хвекторный кМ расшить по линии сопряжения, то мы получим вариант “афганской ленты” в тройной петле:

Трёхвекторное кМ , созданное по даной схеме, можно обозначить в виде дроби 1 / 3 , где в знаменателе указывается число векторов, а сама дробь указывает на какой угол закручиваестся каждый вектор при полном обороте.

Я назвал эту дробь индексом км . Например, если я буду говорить о кМ с индексом км = 1 / 4, то это означает, что речь идёт о четырёхвекторном кМ с закрутом в 1 / 4 оборота (умножив на 360 0 , получим результат в градусах) или в 90 0 . Индекс км ,выраженный в градусах - это базовый угол закрута. При этом надо помнить, что индекс км не может принимать значение целого числа .

Приняв во внимание, что кМ может закручиваться по левому или правому винту, я обозначил левый винт знаком ”-“ , а правый винт - знаком “+” . Тогда полная запись индекса км будет выглядеть на примере так: индекс км = + 1 / 4 . Значит речь будет идти о четырехвекторном кМ с закрутом в 1 / 4 оборота(базовый угол закрута - 90 0 ) и правым винтом.

Индекс км становится очень информативным показателем, помогающим достаточно быстро разобраться в огромном семействе многовекторных кМ и их различных сочетаниях.

Я не ставил перед собой задачу описывать и систематизировать всё многообразие семейства торовых кМ и их взаимосочетаний. Остановлюсь только на нескольких осбенностях, которые необходимо учитывать при конструировании девайсов с геометрией кМ .

1. Если индекс км имеет общее кратное для числителя и знаменателя, то при моделировании получается система из нескольких взаимопересекающихся кМ (от 2-х и более). Рассмотрим примеры 6 -тивекторного построения.

Индекс км =+ 2 / 6 , где общее кратное для данной дроби равно 2 . Это означает, что при моделировании получится система из 2-х трехвекторных кМ с базовым углом закрута в 120 0 :

Индекс км =+ 3 / 6 , где общее кратное равно 3 . При моделировании получается система из 3-х двухвекторных кМ с базовым углом в 180 0 :

2. Если индекс км имеет вид 1 / 4 , 1 / 6 , 1 / 8 … 1 / 2 N или 3 / 4 , 5 / 4 , 5 / 6 , 7 / 6 … 2 N±1 / 2N (где N - любое натуральное число, начиная с числа 2 ), то при моделировании получается самопересекающееся кольцо Мёбиуса - от однократного самопересечения до многократного. При этом односторонность такого кМ сохраняется в любом случае. Приведу несколько примеров, подтверждающих данное утверждение:

Лента Мёбиуса и её сюрпризы

Немецкий математик и астроном-теоретикАвгуст Фердинанд Мёбиус (1790-1868) - ученик великого Гаусса, известный геометр, профессор Лейпцигского университета, директор обсерватории. Долгие годы преподавания, долгие годы работы – обычная жизнь профессора.

И вот надо же, это случилось под конец жизни! Пришла удивительная идея … это был самое значительное событие в его жизни! К сожалению, он так и не успел оценить значимость своего изобретения. Статья о знаменитой ленте Мебиуса была опубликована посмертно.

Существуют две легенды открытия односторонней поверхности.

По первой легенде, знаменитую ленту Мебиуса изобрел вовсе не самАвгуст Фердинанд Мебиус, немецкий астроном и математик, а его горничная, которая в силу невезения неправильно прострочила воротничок рубашки ученого, таким образом войдя в историю. По второй легенде, открыть свой "лист" Мёбиусу помогла служанка, сшившая однажды неправильно концы ленты. Ну, что же, может быть, может быть! Ведь Исаак Ньютон тоже тянул с открытием всемирного закона тяготения, пока ему на голову не свалилось яблоко.

Как же называют ленту Мебиуса (иначе лист Мебиуса или петлю Мебиуса) математики?

На языке математики – это топологический объект, простейшая односторонняя поверхностьс краем в обычном трёхмерном Евклидовом пространстве, где можно попасть из одной точки этой поверхности в любую другую, не пересекая края.

Достаточно сложное определение!

Поэтому удобнее просто рассмотреть ленту Мебиуса поближе. Берем бумажную полоску, перекручиваем полоску в пол-оборота поперек (на 180 градусов) и склеиваем концы.

В другой раз "мама бы по головке за такую работу не погладила"! Но, на этот раз вы правы! Она должна быть перекрученным кольцом.

Ставим в каком-нибудь месте на полоске точку фломастером. А теперь прочерчиваем вдоль всей нашей ленты линию, пока вам не встретится вновь ваша точка. Вам нигде не пришлось переходить через край – это и называется односторонней поверхностью.

Посмотрите, как интересно проходит прочерченная вами линия: она то внутри кольца, то снаружи! А теперь измерьте длину этой линии - от точки до точки.
Удивляетесь?
Она оказывается в два раза длиннее первоначальной полоски бумаги!

Так и должно быть, ведь у вас в руках лента Мебиуса! А у ленты Мебиуса есть только одна сторона, и мы опять скажем – это односторонняя поверхность с краем.

А если по этой черте заставить ползти, не сворачивая, муравья, то вы получите копию картины художника Мориса Эшера.
Бедный муравей на бесконечной дороге !

А можно сделать две немного разные ленты Мебиуса: у одной перекручивать перед склейкой полоску по часовой стрелке, а у другой – против часовой стрелки. Так различаются правая и левая ленты Мебиуса.

А теперь интересные сюрпризы с лентой Мебиуса:

1. Разрежьте ленту Мебиуса вкруговую по центральной линии. Не бойтесь, она не развалится на две части! Лента развернется в длинную замкнутую ленту, закрученную вдвое больше, чем первоначальная. Почему лента Мебиуса при таком разрезе не распадается на отдельные части?
Разрез не касался края ленты, поэтому после разреза край (а значит и вся полоска бумаги) останется целым куском.

2. Полученную после первого опыта ленту Мебиуса (закрученную вдвое больше, чем первоначальная, т.е. на 360 градусов) вновь разрежьте по ее центральной линии.

Что получится?

У вас в руках окажутся теперь две одинаковые, но сцепленные между собой ленты Мебиуса.

3. Сделайте новую ленту Мебиуса, но перед склейкой поверните ее не один раз, а три раза (не на 180 градусов, а на 540). Затем разрежьте ее вдоль центральной линии.

Что получилось?
У вас должна получиться замкнутая лента, завитая в узел трилистника, т.е. в простой узел с тремя самопересечениями.

4. Если вы сделаете ленту Мебиуса с еще большим числом полуоборотов перед склейкой, то получатся неожиданные и удивительные фигуры, называемые парадромными кольцами.

5. Если разрезать ленту Мебиуса, не посередине, а отступая от края приблизительно на треть её ширины, то получатся две сцепленные ленты, одна - более короткая лента Мебиуса, и другая - длинная лента Мебиуса с двумя полуоборотами.

Посмотрите, как это можно сделать на практике:

Близкой к ленте Мебиуса односторонней поверхностью является бутылка Клейна.
Интересно, что бутылка Клейна может быть получена путём склеивания двух лент Мебиуса по краям. Однако, в обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.

Есть еще один интересный объект, связанный с лентой Мебиуса. Это резистор Мебиуса.

В истории нередко бывают случаи, когда одна идея приходит в головы одновременно нескольким изобретателям. Так случилось и с лентой Мебиуса. В том же 1858 году идея ленты пришла и к другому ученому -Иоганну Листингу . Он дал название науке, изучающей непрерывность, -топология . А первенство в открытии топологического объекта – ленты досталось Августу Мебиусу.

Мы незаметно встречаем ленту Мебиуса в разных устройствах: это и красящие ленты в матричных принтерах, и ременные передачи, шлифовальные устройства, ленточные конвееры и многие другие. В этом случае срок службы изделия увеличивается, т.к. уменьшается изнашиваемость. А в системах непрерывной записи применение ленты Мебиуса позволяет вдвое увеличить время записи на одну пленку.

Таинственная лента Мебиуса всегда будоражила умы писателей, художников и скульпторов.
Рисунок ленты Мебиуса используется в графике. Вспомните, например, эмблему знаменитой серии научно-популярных книг "Библиотечка "Квант" или международный символ переработки.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама