THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

На сегодняшнем уроке мы изучим закон сохранения энергии и вспомним о преобразованиях одних типов механической энергии в другие при движении тел, повторим такое понятие, как полная механическая энергия тела. Затем поговорим о процессах, в которых будут иметь место одновременно преобразования механической энергии и внутренней и их взаимные превращения. Также вспомним понятия «замкнутая система» и «теплоизолированная система». На протяжении урока мы неоднократно будем обращаться к истории исследования физических явлений и вспомним величайших ученных, которые внесли свой вклад в развитие представлений об изучаемом разделе физики.

Вопросами преобразований механической и внутренней энергий очень активно занимались в XIX веке. Основные исследования были проведены следующими учеными.

Немецкий ученый Юлиус Майер (рис. 8) показал в своих экспериментах, что возможны взаимные превращения внутренней и механической энергий и что изменения внутренней энергии в таких процессах эквивалентно совершенной работе.

Отдельный интерес составляет работа английского ученого Джеймса Джоуля (рис. 9), который с помощью ряда экспериментов получил доказательство того, что между совершенной над телом работой и его изменением внутренней энергии существует точное равенство.

Особый интерес представляет тот факт, что 1843 году французский инженер Густав Гирн (рис. 10) с помощью серии своих экспериментов попытался развенчать то, что доказывали Майер и Джоуль, но результаты его экспериментов только еще раз доказали соответствие в превращениях механической энергии во внутреннюю.

Для возможности корректного описания процессов теплообмена важно, чтобы система, в которой они происходят, была теплоизолированной и внешние теплообменные процессы не влияли на тела, находящиеся в рассматриваемой системе (рис. 11).

Рис. 11. Замкнутая система

В таком случае выполнен закон сохранения энергии : если система является замкнутой и теплоизолированной, то энергия в этой системе остается неизменной.

Замечание . Данный закон еще очень часто именуют основным законом природы.

Сегодня мы поговорили о взаимных превращениях различных типов механической энергии друг в друга: механической в тепловую, тепловой в механическую. Кроме того, мы рассмотрели важнейший закон физики - закон сохранения энергии.

На следующем уроке мы изучим уравнение теплового баланса.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «sch119comp2.narod.ru» ()
  2. Интернет-портал «youtube.com» ()

Домашнее задание

Немного ранее мы уже рассматривали некоторые явления превращения энергии в механических процессах. Освежим наши знания. Подбрасывая в небо какой-либо предмет (камень или мяч), мы сообщаем ему энергию движения, или другими словами кинетическую энергию. Поднявшись до определенного уровня высоты, движение предмета замедляется, после чего происходит падение. В момент остановки, (когда движение предмета прекратилось в верхней точке) вся кинетическая энергия переходит в потенциальную энергию.

Во время подобных превращений сумма кинетической и потенциальной энергии остается неизменяемой. Если принять, что потенциальная энергия возле поверхности Земли равняется нулю, сумма кинетической энергии, вместе с потенциальной энергией тела на абсолютно любой высоте во время подъема или падения будет равна: E = E k + E n

Делаем вывод: общая сумма потенциальной и кинетической энергии тела остается неизменной, если действуют только силы упругости и тяготения, а сила трения отсутствует. Это и есть закон сохранения механической энергии.

Когда мы проводили эксперимент с падением свинцового шара на плиту, мы наблюдали, как механическая энергия превращалась во внутреннюю энергию. Таким образом, такие виды энергии как механическая и внутренняя, могут переходить из одного тела в другое.

Подобный вывод относится ко всем тепловым процессам. Во время теплопередачи, к примеру, тело которое нагрето сильнее, отдает энергию, в то же время когда менее нагретое тело ее только получает.

Во время процесса переработки двигателем машины топлива, внутренняя энергия топлива преобразуется в механическую энергию движения. Когда энергия переходит из одного тела в другое, или когда один вид энергии превращается в другой, энергия всегда сохраняется.

Изучение явлений, которые относятся к превращениям одного вида энергии в абсолютно другой, привело к открытию одного из главных законов природы – закона сохранения и превращения энергии.

В любом природном явлении, энергия не может возникнуть или исчезнуть просто так. Она просто переходит из одного вида в другой, при этом ее значение всегда сохраняется.

Когда ученые исследовали различные природные явления, они всегда опирались на этот закон. Теперь, мы можем сделать важный вывод: энергия не может возникнуть у тела, если оно не получила ее от какого-нибудь другого тела. Приведем несколько примеров для лучшего уяснения материала.

Лучи Солнца содержат в себе определенный запас энергии. Касаясь поверхности Земли, они отдают ей тепло, нагревают ее. Таким образом, солнечная энергия преобразуется во внутреннюю энергию почвы и тел, которые находятся на поверхности земли. Воздух, который нагрелся от поверхности земли, приходит в движение – так рождается ветер. Начинается преобразование внутренней энергии, которой наделены воздушные массы, в механическую энергию.

Некоторая часть солнечной энергии поглощается листьями растений. Начинают происходить сложные химические реакции (фотосинтез) в результате которых образуются органические соединения, т.е. солнечная энергия превращается в химическую энергию.

Переход внутриатомной энергии в разные виды энергии часто используется на практике. Закон сохранения энергии является научной основой для различного рода расчетов в абсолютно всех областях науки и техники. Необходимо понимать, что внутреннюю энергию невозможно полностью преобразовать в механическую.

История насчитывает огромное число проектов «вечного двигателя». В некоторых случаях ошибки «изобретателя» были очевидны, в других эти ошибки были спрятаны за сложной конструкцией прибора. Неудачные попытки создания «вечного двигателя» продолжаются и сегодня. Все они обречены на неудачу, потому что закон сохранения и превращения энергии отрицает получение работы без затраты энергии.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

При падении тела его потенциальная энергия превращается в кинетическую. При падении свинцового шара на свинцовую пластину механическая энергия превращается во внутреннюю энергию шара и пластины. В двигателе автомобиля и трактора внутренняя энергия топлива превращается в механическую энергию движения.

Механическая и внутренняя энергии могут переходить от одного тела к другому. Кинетическая энергия текущей воды передается, например, колесам турбины, а энергия движущегося ветра - крыльям ветряного двигателя . Переход внутренней энергии от одного тела к другому мы наблюдали при теплопередаче, когда внутренняя энергия от одного тела (например, нагретой печи) передавалась другому телу (воздуху комнаты).

Сохраняется ли энергия при переходе ее от одного тела к другому или при превращении из одного вида в другой?

Рассмотрев пример и проделав лабораторную работу по смешиванию горячей и холодной воды, мы убедились, что количество теплоты, отданное горячей водой, равнялось количеству теплоты, полученному холодной водой. Значит, сколько внутренней энергии отдало одно тело, столько же получило и второе, т. е. значение внутренней энергии сохранилось при переходе от одного тела к другому.

Сделанный вывод относится не только к внутренней энергии.

Все другие, более сложные опыты, которые мы будем изучать в дальнейшем, показывают, что при любых превращениях энергии ее значение сохраняется.

Наблюдения и опыты привели к открытию одного из основных законов физики - закона сохранения и превращения энергии.

Этот закон устанавливает, что энергия не исчезает и не создается. Она только превращается из одного вида в другой или переходит от одного тела к другому.

Энергия не может появиться у тела, если оно не получило ее от другого тела. Энергия текущей воды и ветра получается, как мы знаем, за счет энергии Солнца, потенциальная энергия взлетевшей вверх ракеты - за счет энергии израсходованного при ее запуске топлива; воздух в комнате нагревается, т. е. его внутренняя энергия: увеличивается за счет энергии, полученной от печи или батареи отопления.

Закон сохранения энергии - один из величайших законов природы. Мы наблюдаем его проявление, как в живой, так и в неживой природе, он всегда учитывается в науке и технике.

Изучая различные механизмы, мы познакомились с «золотым правилом» механики, согласно которому ни один механизм не может дать выигрыша в работе. Это правило является одним из проявлений закона сохранения энергии. Действительно, если бы мы, поднимая тело при помощи рычага, получили работу больше той, которую совершили, то и потенциальная энергия поднятого тела оказалась бы больше затраченной энергии, а это согласно закону сохранения энергии невозможно.

Закон сохранения энергии опровергает религиозные легенды о создании мира богом. Из него следует, что материальный мир никем не создан, он существует вечно, непрерывно развиваясь.

Вопросы. 1. Приведите примеры превращения механической энергии во внутреннюю и внутренней в механическую. 2. Приведите примеры перехода механической энергии от одного тела к другому. 3. Какой опыт показывает, что при переходе внутренней энергии от одного тела к другому ее значение сохраняется ? 4. В чем состоит закон сохранения энергий? 5. Какое значение имеет закон сохранения энергии в науке и технике?

Упражнения.

  1. Молот копра при падении ударяет о сваю и забивает ее в землю. Какие превращения и переходы энергии при этом происходят? (Следует учесть, что свая и почва нагреваются при ударе.)
  2. Какие превращения кинетической энергии автомобиля происходят при его торможении?
  3. Два одинаковых стальных шарика падают с одинаковой, высоты . Один падает на стальную плиту и отскакивает вверх, другой попадает в песок и застревает в нем. Какие переходы энергии происходят в каждом случае?
  4. Опишите все превращения и переходы энергии, которые происходят при натирании трубки с эфиром, закрытой пробкой.

Разделы: Физика

Тема: “Закон сохранения энергии в тепловых процессах”

Тип: Урок закрепления знаний изученного материала

Вид: Урок по методу проектов

— Систематизация и обобщение ранее полученных знаний по данной теме;
Дать представления о проектной деятельности и разработать элементарный проект по заданной проблеме;
Заинтересовать учащихся исследовательской деятельностью;
Развивать логическое мышление и умения обобщать;
Научиться сопоставлять и изменять полученные знания на практике и в быту;
Воспитывать чувство коллективизма, взаимопомощи, умение работать в группах.

Оборудование: На столах приборы согласно проектам, компьютер.

Оформление: На доске портрет М.В. Ломоносова, плакат со словами:

“Может собственным Платоном
И быстрых разумом Невтонов
Российская земля рожать”

Про теплоту начнем рассказ
Всё вспомним, обобщим сейчас
Энергия работа до кипения.
Чтоб лени наблюдалось испарение
Мозги не доведём мы до плавления,
Их тренируем до изнеможения.
В учении проявляем мы старание,
Идей научных видя обоняние!
Задачу мы любую одолеем,
И другу подсобить всегда сумеем.
Историю науки изучаем
И Ломоносова великим почитаем,
И проявляем мы себя в труде
Как двигатель с высоким КПД!
Но как же жизнь бывает непроста
С той дамой, что зовётся Теплота!

Учитель: Добрый день, дорогие друзья!

Тема нашего сегодняшнего урока “Закон сохранения энергии в тепловых процессах”. Я надеюсь вы повторили эту тему. Сейчас мы вспомним законы и формулы, но не будем решать сложных задач, вне всякого сомнения, вы умеете делать это хорошо. Задача нашего урока другая. Сегодня вы попробуете себя в роли исследователей, попробуете выполнить несколько элементарных проектов-заданий, в которых решаются задачи, возникающие, кстати, достаточно в обычной жизни.

В процессе изучения различных физических явлений мы знакомились с самыми различными формами энергии. Поскольку сейчас мы закончили изучение темы “Тепловые явления” нас, прежде всего, интересует внутренняя энергия и способы её изменения. Прошу ответить на вопросы:

Учитель: Что называется внутренней энергией?

Учащийся: Внутренняя энергия – это энергия движения и взаимодействия молекул.

Учитель: Какими способами можно изменить внутреннюю энергию?

Учащийся: Внутреннюю энергию можно изменить двумя способами: совершением над телом механической работы или теплопередачей.

Учитель: С теплопередачей непосредственно связано такое понятие, как количество теплоты. Что же такое количество теплоты?

Учащийся: Количество теплоты – это энергия, которую тело получает либо теряет при теплопередаче

Учитель: Давайте охарактеризуем изученные нами тепловые процессы, именно формулами. Сейчас вам будут розданы листы с заданиями в виде таблиц, которые вы должны заполнить. Время работы 3 минуты. После этого вы сделаете взаимопроверку и каждый оценит работу рядом сидящего. (Приложение №1 ). Звучит музыка.

Учитель: Знаете ли вы, что физик Вальтер Нернст увлекался разведением карпов? Однажды кто – то глубокомысленно заметил: “Странный выбор. Кур разводить и то интереснее”. Учёный невозмутимо ответил: “Я развожу таких животных, которые находятся в тепловом равновесии с окружающей средой. Разводить теплокровных – это значит обогревать на свои деньги мировое пространство”. Справедливо ли замечание ученого? На этот и другие вопросы нам ответят законы термодинамики.

Учитель: А что такое термодинамика?

Учащийся: Термодинамика — раздел физики, изучающий законы теплового равновесия и превращения теплоты в другие виды энергии.

Учитель: Сформулируем принципы, которые носят название законов термодинамики.

Учащийся: Количество теплоты, полученное системой, расходуется на изменение её внутренней энергии и на работу, производимую системой против внешних сил.

Учащийся: Невозможен процесс, единственным результатом которого был бы переход энергии путем теплообмена от холодного тела к более горячему.

Учитель: Энергия, согласно закону сохранения не возникает из нечего, поэтому нельзя построить двигатель, который бы совершал работу большую, чем та энергия, которая подводится к двигателю из вне.

Учащийся: Невозможно создать двигатель 1 рода.

Учитель: Ну, коль вечный невозможно создать, то, что такое реально существующие тепловые двигатели?

Учащийся: Машины, преобразующие внутреннюю энергию в механическую, называют тепловыми двигателями.

Учитель: Из каких основных частей состоит любой тепловой двигатель?

Учащийся: Нагреватель -> рабочее тело - > холодильник.

Учитель: Назовите основные виды тепловых двигателей.

Учащийся: Паровая машина, двигатель внутреннего сгорания, паровая турбина, реактивный двигатель.

Учитель: Каков КПД тепловых двигателей?

Учащийся: Обычно не более 30-40%.

Учитель: Человек очень расточительно использует энергию топлива, которую дарит нам природа. Мы, как не благодарные дети, проматываем наследство, накапливавшееся по крохам в течении миллионов лет. Природа поступает более мудро. Как же она решает энергетическую проблему? На этот вопрос вы ответите в своих проектах.

Источниками тепла мы считаем газовую плитку, костёр, сгорание бензина, мазута, кокса в котельных. Горение – это экзотермическая реакция, которая идёт с выделением тепла. Гидроэлектростанции и тепловые станции тоже являются источниками тепла, так как дают до 70% всей электроэнергии, а это электроплитки, электрокамины и другие электро-обогреватели.

2. Проанализируйте виды топлива, которые используются в современной технике. Какие из них использовались в древности? Какие будут использоваться в будущем?

Проанализировав горение сухого горючего, свечи, растительного масла, горение эфира и пользуясь таблицей № 1 разделите виды топлива на 3 группы: твёрдое, жидкое, газообразное.
Оказывается, из множества видов твёрдого топлива, наибольшее количест- во тепла выделяет бурый челябинский уголь, 14300 кДж на 1 кг топлива, и металлическое ракетное горючее:

магний 24830 кДж
алюминий 31000 кДж
бериллий 66600 кДж.

Из жидких видов: керосин осветит 43100 кДж на 1 кг жидкого топлива и дизельное топливо — 42700 кДж.
Газообразное топливо отличается выделением большого количества энергии на 1 кг горючего топлива. Но самое большое количество энергии выделяется при сгорании водорода -119700 кДж.

3. На столе у вас приборы. Используйте их для составления задачи, в которой бы упоминалось сгорание. Приборы: 20 деревянных лучин, термометр, весы с разновесами.

На сколько повысится температура воздуха в большой пещере объемом 10 м на 15 м на 5 м, если там сгорят 20 деревянных лучин, массой 800 г? Начальная температура воздуха около 14?С.

Механическая энергия сохраняется только при отсутствии трения и других сопротивлений. Действие сил трения ведет к уменьшению механической энергии. Действительно, после выключения двигателя автомобиль постепенно теряет кинетическую энергию и останавливается; скатившись с горы, санки постепенно теряют скорость и т. д. Нетрудно сообразить, что бесследное исчезновение энергии в такого рода случаях является лишь кажущимся: при этом всегда происходит выделение некоторого количества теплоты. Таким образом, при трении и вообще при любом сопротивлении движению происходит превращение механической энергии во внутреннюю энергию.

Как известно, мерой уменьшения механической энергии в подобного рода случаях является работа А, а мерой увеличения внутренней энергии - полученная теплота Q. Опыты Джоуля доказали, что А и Q при этом прямо пропорциональны друг другу, а если их измерять в одинаковых единицах (в джоулях), то и равны друг другу. Следовательно, уменьшение механической энергии тел при действии сил трения в точности равно увеличению внутренней энергии всех тел, участвующих в таком процессе.

Это означает, что сумма механической и внутренней энергий всех тел, составляющих замкнутую систему, есть величина постоянная. Иначе говоря, суммарное изменение механической и внутренней энергий всех тел замкнутой системы в любом процессе, найденное по выполненной работе и переданной теплоте, равно нулю .

Изучение явлений природы показало, что изменение энергии тела происходит только при выполнении работы и при теплообмене. Следовательно, работа и количество теплоты - единственно возможные формы обмена энергией между телами. Таким образом, переданное телу количество теплоты Q и выполненная этим телом работа А над другими телами однозначно определяют изменение его внутренней энергии в любом процессе .

Немецкий врач Р. Майер в 1842 г. обратил внимание на взаимную превращаемость всех форм движения материи друг в друга и пытался распространить принцип сохранения энергии на все явления природы. Однако научно обосновал этот принцип в 1847 г. немецкий ученый Г. Гельмгольн.

Сформулируем теперь закон сохранения и превращения энергии: энергия замкнутой системы никогда не исчезает и не создается из ничего. При всех явлениях внутри системы она только превращается из одного вида в другой или передается от одного тела к другому, не изменяясь количественно.

Закон сохранения энергии является всеобщим законом природы, на котором базируется все современное естествознание. С его помощью проверяются новые теории и оцениваются результаты новых экспериментов. Нарушение этого закона в каких-либо явлениях природы привело бы к полной перестройке всех естественных наук и к изменению нашего миропонимания.

Закон сохранения и превращения энергии в механических и тепловых процессах

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На сегодняшнем уроке мы изучим закон сохранения энергии и вспомним о преобразованиях одних типов механической энергии в другие при движении тел, повторим такое понятие, как полная механическая энергия тела. Затем поговорим о процессах, в которых будут иметь место одновременно преобразования механической энергии и внутренней и их взаимные превращения. Также вспомним понятия «замкнутая система» и «теплоизолированная система». На протяжении урока мы неоднократно будем обращаться к истории исследования физических явлений и вспомним величайших ученных, которые внесли свой вклад в развитие представлений об изучаемом разделе физики.

Примеры взаимного превращения видов механической энергии

Ранее мы уже рассматривали возможность превращения одного вида механической энергии в другой, например, потенциальной в кинетическую или, наоборот, кинетической в потенциальную. Также мы приводили пример периодического превращения потенциальной и кинетической энергии друг в друга.

Пример 1. Переход потенциальной энергии в кинетическую

Этот пример мы уже рассматривали в курсе 7 класса и в начале изучения этого раздела. Если представить себе тело, закрепленное на некоторой высоте, то оно имеет некую потенциальную энергию относительно уровня поверхности. Потом, если это тело отпустить, то оно начнет падать, т. е. его высота будет уменьшаться, и ускоряться, т. е. увеличивать свою скорость. Следовательно, его потенциальная энергия будет уменьшаться, а кинетическая – увеличиваться (рис. 1), энергии будут превращаться друг в друга. В момент перед самым соприкосновением с землей вся потенциальная энергия тела переходит в кинетическую.

Рис. 1. Превращение потенциальной энергии в кинетическую

Пример 2. Периодические превращения типов механической энергии (маятники) . Рассмотрим по очереди три вида маятников: математический, пружинный, маятник Максвелла.

1. Маятник Максвелла – представляет собой диск, закрепленный на оси, на которую наматываются две нити (рис. 2).

Принцип работы этого маятника следующий: сначала нити наматываются на ось, тем самым поднимая маятник вверх и сообщая ему дополнительную потенциальную энергию, затем диск маятника отпускают и он начинает, раскручиваясь, двигаться вниз, нить разматывается до конца, затем наматывается снова по инерции и т. д.

Таким образом, можно наблюдать следующие преобразования механической энергии: начальное накопление потенциальной энергии – превращение ее в кинетическую энергию – превращение в потенциальную и т. д. (рис. 3).

Рис. 3. Переход потенциальной энергии маятника в кинетическую и наоборот

2. Математический маятник (груз на нити) – материальная точка, совершающая колебания под действием силы тяжести на длинной нерастяжимой нити (рис. 4).

Рис. 4. Математический маятник

Для начала колебательного процесса в этом маятнике нужно отвести тело, подвешенное на нити, от положения равновесия (придаем ему потенциальную энергию) и отпустить. После этого будут наблюдаться горизонтальные колебания в вертикальной плоскости и мы можем видеть похожие на предыдущий пример превращения энергии: подъем – переход кинетической энергии в потенциальную, опускание – переход потенциальной в кинетическую и т. д.

3. Пружинный маятник – груз, совершающий колебания на пружине под действием силы упругости (рис. 5).

Рис. 5. Пружинный маятник

Если подвесить груз к пружине и оттянуть ее вниз (придать пружине потенциальную энергию), а затем отпустить, то будут наблюдаться более сложные превращения энергии: потенциальная энергия пружины будет переходить в кинетическую и потенциальную энергию груза и наоборот.

Закон сохранения механической энергии

Все приведенные примеры экспериментов говорят о том, что мы уже знаем: полная механическая энергия тела (сумма кинетической и потенциальной) не меняется или, как говорят по-другому, сохраняется. Это мы называем законом сохранения механической энергии:

Замечание. Важно помнить, что этот закон выполнен только для замкнутой системы тел.

Определение. Замкнутая система тел – это та система, в которой не действуют внешние силы.

Примеры перехода механической энергии во внутреннюю и наоборот

Пример 3. Теперь перейдем к основной части нашей сегодняшней темы и вспомним, каким образом механическая энергия может переходить во внутреннюю . Происходит этот процесс путем совершения механической работы над телом, например, при сгибании и разгибании проволоки она будет нагреваться, при нескольких ударах молотка о наковальню нагреется и молоток, и наковальня.

Пример 4. Возможен и обратный процесс, когда внутренняя энергия будет переходить в механическую . Например, подобные процессы происходят в двигателе внутреннего сгорания (рис. 6). Принцип работы двигателя внутреннего сгорания основан на преобразовании энергии сгорания топлива в механическую энергию движения поршней, которая затем через передаточные механизмы преобразуется в энергию вращения колес автомобиля.

Рис. 6. Двигатель внутреннего сгорания

Аналогичный принцип превращения внутренней энергии в механическую происходит и в паровых двигателях (рис. 7).

Рис. 7. Паровой двигатель на паровой машине (Источник)

История изучения преобразования механической и тепловой энергии

Вопросами преобразований механической и внутренней энергий очень активно занимались в XIX веке. Основные исследования были проведены следующими учеными.

Немецкий ученый Юлиус Майер (рис. 8) показал в своих экспериментах, что возможны взаимные превращения внутренней и механической энергий и что изменения внутренней энергии в таких процессах эквивалентно совершенной работе.

Рис. 8. Юлиус Майер (1814-1878) (Источник)

Отдельный интерес составляет работа английского ученого Джеймса Джоуля (рис. 9), который с помощью ряда экспериментов получил доказательство того, что между совершенной над телом работой и его изменением внутренней энергии существует точное равенство.

Рис. 9. Джеймс Джоуль (1819-1889) (Источник)

Особый интерес представляет тот факт, что 1843 году французский инженер Густав Гирн (рис. 10) с помощью серии своих экспериментов попытался развенчать то, что доказывали Майер и Джоуль, но результаты его экспериментов только еще раз доказали соответствие в превращениях механической энергии во внутреннюю.

Рис. 10. Густав Гирн (Источник)

Закон сохранения энергии

Для возможности корректного описания процессов теплообмена важно, чтобы система, в которой они происходят, была теплоизолированной и внешние теплообменные процессы не влияли на тела, находящиеся в рассматриваемой системе (рис. 11).

Рис. 11. Замкнутая система

В таком случае выполнен закон сохранения энергии : если система является замкнутой и теплоизолированной, то энергия в этой системе остается неизменной.

Замечание . Данный закон еще очень часто именуют основным законом природы.

Сегодня мы поговорили о взаимных превращениях различных типов механической энергии друг в друга: механической в тепловую, тепловой в механическую. Кроме того, мы рассмотрели важнейший закон физики – закон сохранения энергии.

На следующем уроке мы изучим уравнение теплового баланса.

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.
  1. Интернет-портал «sch119comp2.narod.ru» (Источник)
  2. Интернет-портал «youtube.com» (Источник)

§ 26. Закон сохранения энергии в механических и тепловых процессах

Внутренняя энергия тела может быть изменена либо путем теплопередачи, либо путем совершения работы. Очевидно, что если изменение внутренней энергии тела происходит одновременно с теплопередачей и совершением внешней силой механической работы над телом, то, согласно закону сохранения и превращения энергии, который гласит, что при всех происходящих в природе явлениях энергия не исчезает и не возникает, а передается от одних материальных объектов к другим или превращается из одной формы в другую, оставаясь постоянной по величине. Приращение внутренней энергии тела равно сумме совершенной над ним работы и количества переданной теплоты.

Так, если путем совершения работы А сжать газ, находящийся в цилиндре, который помещен в горячую воду (рис. 28), то увеличение внутренней энергии ΔU газа будет равно сумме совершенной работы А и количества теплоты Q, полученного им от горячей воды: ΔU = A + Q. Увеличение внутренней энергии газа вызывает повышение его температуры, что фиксируется электрическим термометром.


Рис. 28. Увеличение внутренней энергии газа в результате совершения работы и теплообмен

Следовательно, увеличение внутренней энергии тела при переходе из одного состояния в другое равно сумме работы внешних сил над телом и количества переданной ему теплоты. В этом заключается закон сохранения и превращения энергии в механических и тепловых процессах. Если системе сообщается количество теплоты и при этом система совершает работу, то увеличение ее внутренней энергии ΔU равно разности между количеством теплоты Q, сообщенной системе, и работой А, совершенной системой:

Опыты и наблюдения показали, что механическая энергия тел может полностью превратиться во внутреннюю в процессе совершения работы. Иначе обстоит дело с внутренней энергией, например сжатого газа, пара: только часть ее может быть превращена в механическую. Причина этого хаотическое движение молекул газа, пара. Если бы даже все молекулы двигались в одном направлении и передали всю свою кинетическую энергию поршню, то осталась бы не превращенной в механическую энергию потенциальная энергия взаимодействия.

Задача 7. При штамповке заготовки из алюминия молот массой 700 кг свободно падает с высоты 1 м. При этом заготовка массой 2 кг нагревается до 1°С. Какой процент потенциальной энергии поднятого молота идет па нагревание, а какой — на штамповку?

На штамповку идет 0,74 энергии молота.

Задача 8. В оболочке стратостата гелий массой 9,6 кг получил от солнечного нагрева 250 кдж количества теплоты и нагрелся на 5° С. Определить работу газа при изобарическом расширении и увеличении его внутренней энергии.

Работа изобарического расширения газа А = 250 кдж — 150 кдж = 100 кдж.

Закон сохранение энергии тепловых процессов

На этом сайте представлены учебные презентации по физике, а также советские познавательные диафильмы и учебные диафильмы для школьников по физике.

Закон сохранения энергии в тепловых процессах — диафильм по физике

Диафильм по физике для старшеклассников: внутренняя энергия, молекулярно-кинетические процессы и внутренняя энергия, переход механической энергии во внутреннюю энергию, переход внутренней энергии в механическую, внутренняя энергия идеального одноатомного газа, зависимость внутренней энергии реального газа от макроскопических параметров, работа в термодинамике и механике, изменение внутренней энергии при совершении работы, работа сжатого газа, теплообмен, количество теплоты, первый закон термодинамики, закон сохранения энергии в природе, работа системы над внешними силами, применение первого закона динамики к различным процессам, второй закон термодинамики.

Год выпуска: 1985г.


Внимание! Включен автопоказ. Для остановки и ручного переключения кадров наведите курсор на «стрелку».

Транспортный налог на машину 2018 года Транспортного налога в 2018 года - отменяется. Почему отменили транспортный налог в 2018 году для легковых автомобилей: Транспортный налог был уже настолько привычным множеству граждан, что трудно представить его отмену. Путин подписал закон, который рассудил всех. Теперь все абсолютно […]

  • НОТАРИУС ПО НАСЛЕДСТВУ Оформление наследства в Москве и Московской, Калужской, Рязанской, Владимирской области Услуги нотариуса по наследству Оформление наследства у нотариуса после смерти начинается с подачи заявления о вступление в права […]
  • Выплаты при рождении ребенка в Самарской области - что имеем? Региональные выплаты при рождении ребенка в семье - неплохое подспорье в наше нелегкое время. Нельзя сказать, что они оказывают сильную поддержку, но без них было бы намного сложнее, особенно на начальном этапе. В этой статье […]
  • Образец заявления на работу в школу Неплохой шаблон документа послужит, чтобы сохранить время для тщательной обработки бумаги. Важные документы имеют критичные поля для данных. Чтобы заполнить их правильно требуется рассмотреть принцип. Проще всего сделать это прочитав шаблон, […]
  • Военная коллегия Петроченков Анатолий Яковлевич Председатель Генерал-лейтенант юстиции Заместитель Председателя Верховного Суда Российской Федерации - Председатель Военной коллегии Верховного Суда РФ. Заслуженный юрист Российской Федерации. Высший квалификационный класс. Награжден […]
  • Мир Достоевского Жизнь и творчество Достоевского. Анализ произведений. Характеристика героев Меню сайта Комната Сони Мармеладовой в романе "Преступление и наказание": описание в цитатах (квартира, жилище) Соня Мармеладова является главной героиней романа "Преступление и наказание" […]
  • Как сказал философ (Хевеши) им наблюдаемые» . Надеюсь, что к концу урока будет нам и счастье и глубокая убеждённость в красоте и гармонии природы.

    Итак, «энергия»… Это слово рождает в сознании образы бушующих волн, мчащихся автомобилей, нефтяных пластов, перегороженных плотинами водохранилищ, любую интенсивную деятельность. С этим понятием связана вся наша повседневная жизнь – она обогревает дома, приводит в движение и заставляет работать бытовые приборы. Все живые существа в буквальном смысле поедают энергию, чтобы поддержать жизнь. Завтракая, вы получаете «заряд энергии», чтобы начать трудовой день.

    Скачать:


    Предварительный просмотр:

    «Сведение множества к единому –

    в этом первооснова Красоты»

    Пифагор

    «Примеры при обучении полезнее правил»

    И. Ньютон

    Тема урока: «Закон сохранения и превращения энергии в механических и тепловых процессах»

    Тип урока: комбинированный урок с привлечением межпредметных связей

    Цели урока:

    • рассмотреть и систематизировать примеры превращений энергии в механических и тепловых процессах;
    • показать универсальность ЗСЭ на примерах механических, тепловых процессов и процессов происходящих в живой и неживой природе, опираясь на уже имеющиеся знания и межпредметные связи;
    • выяснить физическое содержание ЗСЭ;
    • показать практическое применение ЗСЭ при решении задач.

    Оборудование:

    Мяч, заводная игрушка, математический маятник и маятник Максвелла, модели ДВС и паровой турбины, пробирка с водой, закрытая пробкой, спиртовка, компьютер, проектор, экран, презентация к уроку (приложение 4 )

    На каждом столе у учащихся – подготовленная для заполнения таблица (приложение 1), лист с вопросами (приложение 2),лист с задачами для урока (приложение 3).

    Ход урока.

    1. Актуализация знаний (фронтальный опрос, см приложение 2 )
    1. Груз, подвешенный на нити совершает колебания. Какие превращения энергии происходят при этом?
    1. Объяснение нового материала.

    Сегодня мы будем говорить об энергии, энергетических превращениях и о самом фундаментальном законе природы – законе сохранения энергии. Мы будем наблюдать, рассуждать, анализировать энергетические превращения в живой и неживой природе во всём, что нас окружает. Этот анализ будет служить основой нашего вывода. Мы заново откроем ЗСЭ на основе наблюдений и обобщений опытных фактов.

    Как сказал философ (Хевеши) «Мыслящий ум не чувствует себя счастливым, пока ему не удастся связать воедино разрозненные факты, им наблюдаемые» . Надеюсь, что к концу урока будет нам и счастье и глубокая убеждённость в красоте и гармонии природы.

    Итак, «энергия»… Это слово рождает в сознании образы бушующих волн, мчащихся автомобилей, нефтяных пластов, перегороженных плотинами водохранилищ, любую интенсивную деятельность. С этим понятием связана вся наша повседневная жизнь – она обогревает дома, приводит в движение и заставляет работать бытовые приборы. Все живые существа в буквальном смысле поедают энергию, чтобы поддержать жизнь. Завтракая, вы получаете «заряд энергии», чтобы начать трудовой день.

    Слайд 2: Какие 2 вида механической энергии вы знаете?

    (потенциальная и кинетическая) . Приведите примеры перехода кинетической энергии в потенциальную и наоборот. (вам поможет лист с вопросами и демонстрации на столе. Заполните самостоятельно первую колонку в таблице. (см. приложение 1 , приложение 2)

    Слайд 3: Кроме механической какой ещё энергией могут обладать тела? (внутренней). Приведите примеры перехода внутренней энергии в механическую и наоборот. Заполните самостоятельно вторую колонку в таблице.

    Слайд 4: Что общего между заряженной мышеловкой, куском сливочного масла и движущимся автомобилем?

    Всё это обладает запасом энергии. Это теперь мы знаем, что энергия проявляется во множестве различных форм.

    А вот какое представление было об энергии в 18 веке, задолго до открытия ЗСЭ

    Слайд 5: «Энергия – слово греческого происхождения. Означает могущество, достоинство или действенность чего-либо» (из статьи «Энергия в первом издании Британской энциклопедии 1771год)

    Поэтому неудивительно, что ЗСЭ был сформулирован на основе наблюдений и обобщений опытных фактов только в середине 19 века…..

    Слайд 6:

    немецким учёным, врачом Робертом Майером,

    английским учёным и промышленником Джеймсом Джоулем,

    немецким учёным, физиологом Германом Гельмгольцем

    Почему ни Ньютон, ни Галилей с их умом и талантом этого не сделали? Почему фундаментальный закон природы был сформулирован врачом, физиологом и владельцем пивоваренного завода?

    Надо было выйти за пределы механики, обладать общефилософским

    другие примеры превращений энергии

    • падение мяча
    • движение маятника
    • движение заводной механической игрушки
    • выстрел из пружинного пистолета
    • выстрел из лука
    • падение свинцового шара на свинцовую плиту
    • торможение автомобиля
    • нагревание при трении
    • работа теплового двигателя и паровой турбины
    • выстрел из огнестрельного оружия
    • теплообмен
    • энергетические превращения, связанные с изменением агрегатных состояний
    • процесс фотосинтеза
    • пищевые цепочки
    • ветры,ураганы, круговорот воды в природе

    подходом.

    Проверим работу по заполнению колонок 1 и2 таблицы (слайды 7-8 )

    Попробуем пойти по тому же пути и сделать анализ энергетических превращений. Вы спросите «а что же писать в третей колонке?». Всё очень просто: мы живём, дышим, думаем, едим, светит Солнце, идёт дождь, дует ветер и т д.А ведь все эти явления связаны с превращениями энергии. И здесь нам понадобятся не только знания по физике.

    Что происходит с энергией при теплообмене? (слайд 9 )

    • теплообмен

    в теплоизолированной системе если между телами происходит теплообмен, то энергия передаётся от более нагретых тел к менее нагретым, причём при отсутствии потерь тепла Q получ =Q отд

    Почему во время процесса плавления температура остаётся постоянной?

    • (слайд 10 )энергетические превращения, связанные с изменением агрегатных состояний

    в процессе плавления кристаллического вещества вся поступающая энергия расходуется на разрушение кристаллической решётки. При этом температура остаётся постоянной, но внутренняя энергия вещества увеличивается. При кристаллизации энергия выделяется, так как частицы занимают такие положения, при которых их энергия минимальна.

    Что происходит при сгорании топлива? (слайд 11)

    из курса физики 8 класса вы узнали, что при сжигании топлива каждый атом углерода соединяется с двумя атомами кислорода (атомы соединяются в молекулы) при этом выделяется энергия. Вообще всякая перестройка химических связей сопровождается изменением энергии. Можно сказать, что при горении химическая энергия топлива переходит во внутреннюю энергию образовавшихся газов. Из курса химии вам предстоит узнать, что химические реакции могут идти как с выделением теплоты – экзотермические (соединения и замещения), так и с поглощением теплоты – эндотермические (реакции разложения). При экзотермических реакциях внутренняя энергия реагирующих веществ уменьшается настолько, насколько увеличивается внутренняя энергия окружающей среды(При эндотермических реакциях наоборот). Реакции окисления – соединение с кислородом – экзотермичны, то есть сопровождаются выделением энергии. Если реакция идёт достаточно быстро, а энергия выделяется в виде тепла и света, процесс называют горением. (опыт – пробирка с водой и оксид бария или кальция)

    • процесс фотосинтеза (слайд 12)

    из курса биологии вы уже знаете, что фотосинтез - синтез органических веществ из неорганических под действием солнечного света. На свету в хлоропластах клеток зелёного листа из воды и углекислого газа образуются органические вещества (крахмал), из воздуха поглощается углекислый газ и выделяется кислород. Другими словами происходит превращение солнечной энергии в энергию химических связей.

    • обмен и превращение энергии в живых организмах (слайд 13)

    Какой неведомый источник энергии приводит в движение наши мышцы, сердце, заставляет думать голову? Задумаемся, почему все едят? Почему пища так важна для жизни? Пища даёт живым существам строительный материал и энергию. Конфеты и котлеты, колбаса и мороженое согревают и приводят в движение организм. В процессе пищеварения происходит расщепление белков, жиров, углеводов. В клетках нашего организма энергия запасается в молекулах АТФ. В процессе жизнедеятельности клетки, молекулы АТФ расщепляются и за счёт выделившейся при этом энергии и происходят все процессы в клетке.

    • пищевые цепочки (слайд 14)

    Посмотрим на энергетические процессы в живых организмах более глобально. Ведь все живые организмы связаны между собой энергетическими отношениями, так как являются объектами питания других организмов. Травоядные животные поедают растения, мелкие хищники поедают травоядных, их поедают крупные хищники и т.д. Перенос энергии от её источника (растений) через ряд организмов называют пищевой цепью.

    Кто может доказать, что ветряные мельницы работают за счёт энергии солнечного излучения?

    • ветры, ураганы, круговорот воды в природе (слайд 15)

    круговорот воды в природе происходит, как вы знаете из природоведения и географии за счёт энергии Солнца. Ветры – это гигантские конвективные потоки. Поверхность планеты прогревается неравномерно (сказывается наклон земной оси 22,5 и то, что поверхность суши составляет лишь 30% поверхности планеты, а вода имеет большую удельную теплоёмкость), следовательно возникающая разность температур создаёт разность давлений и воздушные массы перемещаются из области высокого давления в область низкого давления. Самые мощные по своей энергетике природные явления – тропические ураганы, также происходят за счёт энергии Солнца.

    А за счёт какой энергии светит Солнце? Солнце получает энергию от ядерного «сгорания» водорода, который переходит при этом в гелий. Источником энергии Солнца являются реакции термоядерного синтеза.

    А сколько примеров превращения энергии у нас дома! Взять хотя бы бытовую технику! (вентилятор и миксер, электрический чайник, утюг и стиральная машина)

    И сам процесс производства электрической энергии тоже связан с превращениями энергии. (слйд16)

    Проверяем заполнение третьей колонки в таблице. (слайд 17)

    Теперь можно сказать, что энергия не может появиться у тела, если оно не получило её у другого тела.

    Делаем вывод на основе анализа энергетических превращений:

    Во всех явлениях, происходящих в природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой, при этом её значение сохраняется.

    Сейчас, в 21 веке, идея сохранения и превращения энергии, привычна для учеников 7-8 класса, а 160 лет назад, когда их впервые высказал Майер, эти идеи не только не были оценены по достоинству, но даже отвергались как вздорные и чуждые физике. В своих работах Майер привёл в доказательство 25 различных примеров превращения и сохранения энергии (а мы на уроке сколько?), Джоуль в течении почти 40 лет проводил самые разнообразные опыты, в которых за счёт механической работы происходило выделение тепла, и на основе измерений подсчитывал механический эквивалент теплоты.

    Слайд 19 - формулировка Джоуля «Теплота, живая сила и притяжение на расстоянии (потенциальная энергия) взаимно превратимы друг в друга, причём, в этом превращении ничего не теряется»

    Как выглядит математическое выражение всеобщего закона сохранения и превращения энергии? (слайд 20)

    1. Решение задач (см. приложение 3 ) слайды 21-23
    1. Подведём итоги урока:
    • мы увидели, что энергия существует во множестве различных форм (механическая, тепловая, химическая, электрическая, ядерная и даже энергия массы – оказывается, любой объект обладает энергией уже потому, что существует);
    • мы убедились, на примерах, что все явления природы взаимосвязаны: одно явление порождает другое. Может быть, Ньютону и Галилею и не хватило такого общефилософскогоподхода, надо было выйти за пределы механики;
    • мы сформулировали ЗСЭ, опираясь на множество наблюдений, опытных фактов, при этом опирались и на имеющиеся знания по физике и на знания из других наук (напомню, что именно биология помогла физике открыть ЗСЭ: Майер установил этот закон при изучении количества тепла, выделяемого и поглощаемого живым организмом);
    • обратимся к эпиграфам нашего урока: согласимся и с Ньютоном и с Пифагором – множество примеров и опытных фактов подвели нас к пониманию единства и красоты Природы.

    V. Домашнее задание

    А.В. Пёрышкин «Физика 8» § 11, упр 6

    Задача №1.

    Решение:

    0,6Е п = Q

    0,6mgh = mc∆t

    ∆t = 0,6gh/c

    Ответ: 1.7⁰С

    Задача№2.

    Решение:

    А = Q

    NΤ = mc∆t

    ∆t = NΤ/mc

    Ответ: 3,6⁰С

    Задача №3.

    Решение:

    0,24Q = Е к

    0,24m 1 q = m 2 v 2 /2

    m 1 = m 2 v 2 /0,48q

    Ответ: 4 г.

    1. Какие превращения энергии происходят при движении камня, брошенного вверх?
    2. Резиновый мяч упал на пол и отскочил вверх. Какие превращения механической энергии произошли при этом?
    3. Груз, подвешенный на нити, совершает колебания. Какие превращения энергии происходят при этом?
    4. Автомобиль движется равномерно и прямолинейно по горизонтальной дороге. На что расходуется энергия топлива?
    5. Какие превращения энергии происходят при выстреле из пружинного пистолета?
    6. Какие превращения энергии происходят при торможении автомобиля?
    7. На каком физическом явлении основан способ получения огня трением?
    8. Опишите превращения энергии, которые происходят при падении на пол пластилинового шарика.
    9. Какие превращения энергии происходят при вылете пробки из пробирки с кипящей водой?
    10. Сжатую металлическую пружину поместили в сосуд с кислотой и растворили её. Куда исчезла потенциальная энергия сжатой пружины?

    1.Какие превращения энергии происходят при движении камня, брошенного вверх?

    2.Резиновый мяч упал на пол и отскочил вверх. Какие превращения механической энергии произошли при этом?

    3.Груз, подвешенный на нити, совершает колебания. Какие превращения энергии происходят при этом?

    4.Автомобиль движется равномерно и прямолинейно по горизонтальной дороге. На что расходуется энергия топлива?

    5.Какие превращения энергии происходят при выстреле из пружинного пистолета?

    6.Какие превращения энергии происходят при торможении автомобиля?

    7.На каком физическом явлении основан способ получения огня трением?

    8.Опишите превращения энергии, которые происходят при падении на пол пластилинового шарика.

    9.Какие превращения энергии происходят при вылете пробки из пробирки с кипящей водой?

    10.Сжатую металлическую пружину поместили в сосуд с кислотой и растворили её. Куда исчезла потенциальная энергия сжатой пружины?

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Закон сохранения и превращения энергии в механических и тепловых процессах.

    Потенциальная энергия – это энергия которая определяется взаимным положением тел или частей одного и того же тела. Кинетическая энергия – это энергия которой обладают движущиеся тела. СУЩЕСТВУЕТ ДВА ВИДА МЕХАНИЧЕСКОЙ ЭНЕРГИИ: КИНЕТИЧЕСКАЯ И ПОТЕНЦИАЛЬНАЯ, КОТОРЫЕ МОГУТ ПРЕВРАЩАТЬСЯ ДРУГ В ДРУГА. Е пот = mgh Е пот = KX /2 E кин = mv /2 2 2

    ВСПОМНИМ: КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ВСЕХ МОЛЕКУЛ, ИЗ КОТОРЫХ СОСТОИТ ТЕЛО, И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ИХ ВЗАИМОДЕЙСТВИЯ СОСТОВЛЯЮТ ВНУТРЕННЮЮ ЭНЕРГИЮ ТЕЛА - U Способы изменения U Совершение работы Тепло- передача

    Что общего между: заряженной мышеловкой куском сливочного масла движущимся автомобилем батарейкой

    Из статьи «Энергия» в первом издании Британской энциклопедии (1771г.) «Энергия - слово греческого происхождения, означает могущество, достоинство или действенность чего-либо. Его используют также в переносном смысле для обозначения выразительности речи».

    Когда и кем сформулирован? середина 19 века Роберт Джеймс Герман Майер Джоуль Гельмгольц (1814-1878) (1818-1889) (1821-1894)

    Энергетические превращения Е пот Е кин падение мяча; движение маятника; выстрел из пружинного пистолета; выстрел из лука; движение заводной механической игрушки.

    Энергетические превращения Е мех U падение свинцового шара на свинцовую плиту; торможение автомобиля у светофора; нагревание при трении; работа тепловых двигателей; выстрел из огнестрельного оружия.

    ТЕПЛООБМЕН

    И ИЗМЕНЕНИЕ АГРЕГАТНЫХ СОСТОЯНИЙ ВЕЩЕСТВА

    СГОРАНИЕ ТОПЛИВА

    Энергетические превращения в организме человека в нервных клетках, органах вкуса и обоняния внутреннее ухо сетчатка глаза мышечные клетки электрическая электрическая механическая электрическая химическая звуковая световая химическая

    ПИЩЕВЫЕ ЦЕПОЧКИ

    КРУГОВОРОТ ВОДЫ В ПРИРОДЕ

    Энергетические превращения на электростанциях Электрическая энергия Энергия падающей воды Внутренняя энергия пара Энергия ветра Энергия приливов и волн Энергия солнца ГЭС ТЭС ВЭУ СЭС ПЭС (ветряные) (солнечные) (приливные)

    Другие примеры превращения энергии в живых организмах и в природе теплообмен; тепловые эффекты химических реакций (сгорание топлива) процесс фотосинтеза; обмен и превращение энергии в живых организмах; пищевые цепочки; ураганы, ветры, круговорот воды в природе.

    Вывод: Во всех явлениях, происходящих в природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой. При этом её значение сохраняется.

    Из работ Джоуля: «Теплота, живая сила и притяжение на расстоянии (потенциальная энергия) взаимно превратимы друг в друга, причём в этом превращении ничего не теряется».

    Математическое выражение закона сохранения энергии: Е = Е + E = const Е = mgh; E кин = mv /2; Е пот = KX /2 E - E = A ; U + A = Q полн мех кин пот пот 2 2 мех 2 мех 1

    Задача №1. Вода падает с высоты 1200 метров. На сколько повысится температура воды, если па её нагревание идёт 60% работы силы тяжести? 0,6mgh = mc t t= 0,6gh/c Ответ: Температура повысится на 1,7 º С

    Задача №2 Двигатель мощностью 50 Вт в течение 10 минут вращает лопасти вентилятора внутри калориметра с водой. На сколько градусов повысится за это время температура воды, если её масса 2 кг? Потерями тепла пренебречь. A = Q N τ = mc t t = N τ /mc Ответ: Температура повысится на 3,6 º С

    Задача №3 При выстреле из ствола винтовки пуля массой 9 г приобретает скорость 800 м/с. Определить массу порохового заряда, если КПД выстрела 24%. 0,24m q = m v /2 m = m v /0,48q 2 1 2 2 2 1 Ответ: Масса порохового заряда 4 г

  • Какие превращения энергии происходят при выстреле из пружинного пистолета?
  • Какие превращения энергии происходят при торможении автомобиля?
  • На каком физическом явлении основан способ получения огня трением?
  • Опишите превращения энергии, которые происходят при падении на пол пластилинового шарика?
  • Какие превращения энергии происходят при вылете пробки из пробирки с кипящей водой?
  • Сжатую металлическую пружину поместили в сосуд с кислотой и растворили её. Куда исчезла потенциальная энергия сжатой пружины?
  • Предварительный просмотр:

    Задача №1.

    Вода падает с высоты 1200 метров. Насколько повысится температура воды, если на её нагревание идёт 60% работы силы тяжести?

    Решение:

    Ответ:

    Задача№2.

    Двигатель мощностью 50 Вт в течение 10 минут вращает лопасти вентилятора внутри калориметра с водой. Насколько повысится за это время температура воды, если её масса 2 кг? Потерями тепла пренебречь.

    Решение:

    Ответ:

    Задача №3.

    При выстреле из ствола винтовки пуля массой 9г приобретает скорость 800 м/с. Определить массу порохового заряда, если КПД выстрела 24%.

    (q пороха = 3,8×10 6 Дж/кг)

    Решение:

    Ответ:

    Задача №4.

    Стальной шарик массой 50 г падает с высоты 1,5 м на каменную плиту и, отскакивая от неё, поднимается на высоту

    1,2 м. Почему шарик не поднялся на прежнюю высоту? Сколько механической энергии превратилось во внутреннюю? На сколько градусов нагрелся шарик? (удельная теплоёмкость стали 460 Дж/кг ⁰ С)

    Решение:

    Ответ:

    Задача №5.

    Кусок свинца испытывает абсолютно неупругое столкновение с препятствием, двигаясь со скоростью 350 м/с. Какая часть свинца расплавилась, если всё количество теплоты, выделившееся при ударе, поглощается свинцом? Температура свинца перед ударом 27 ⁰ С, удельная теплоёмкость свинца 130 Дж/кг С, удельная теплота плавления свинца 25кДж/кг, температура плавления свинца 327 ⁰ С

    Решение:

    THE BELL

    Есть те, кто прочитали эту новость раньше вас.
    Подпишитесь, чтобы получать статьи свежими.
    Email
    Имя
    Фамилия
    Как вы хотите читать The Bell
    Без спама